EDE MEC 1

SESSION 2025

CAPET CONCOURS EXTERNE ET CAFEP CORRESPONDANT ET TROISIEME CONCOURS

Section: SCIENCES INDUSTRIELLES DE L'INGÉNIEUR

Option: INGÉNIERIE MÉCANIQUE

ÉPREUVE ÉCRITE DISCIPLINAIRE

Durée: 5 heures

Calculatrice autorisée selon les modalités de la circulaire du 17 juin 2021 publiée au BOEN du 29 juillet 2021.

L'usage de tout ouvrage de référence, de tout dictionnaire et de tout autre matériel électronique est rigoureusement interdit.

Il appartient au candidat de vérifier qu'il a reçu un sujet complet et correspondant à l'épreuve à laquelle il se présente.

Si vous repérez ce qui vous semble être une erreur d'énoncé, vous devez le signaler très lisiblement sur votre copie, en proposer la correction et poursuivre l'épreuve en conséquence. De même, si cela vous conduit à formuler une ou plusieurs hypothèses, vous devez la (ou les) mentionner explicitement.

NB: Conformément au principe d'anonymat, votre copie ne doit comporter aucun signe distinctif, tel que nom, signature, origine, etc. Si le travail qui vous est demandé consiste notamment en la rédaction d'un projet ou d'une note, vous devrez impérativement vous abstenir de la signer ou de l'identifier. Le fait de rendre une copie blanche est éliminatoire.

INFORMATION AUX CANDIDATS

Vous trouverez ci-après les codes nécessaires vous permettant de compléter les rubriques figurant en en-tête de votre copie

Ces codes doivent être reportés sur chacune des copies que vous remettrez.

► Concours externe du CAPET de l'enseignement public :

► Concours externe du CAFEP/CAPET de l'enseignement privé :

▶ Troisième concours externe du CAPET de l'enseignement public :

POSTE DE DÉCOUPE POUR MATÉRIAUX FRAGILES

Présentation du support d'étude

1.1. Mise en situation

Le poste de découpe étudié dans ce sujet s'insère dans une unité de production (Figure 0) dont le but est de réaliser la mise en forme de pièces à partir de plaques. Cette unité de production doit permettre de découper chacune des plaques en huit bandes puis chacune des bandes en cinq pièces (Figure 1).

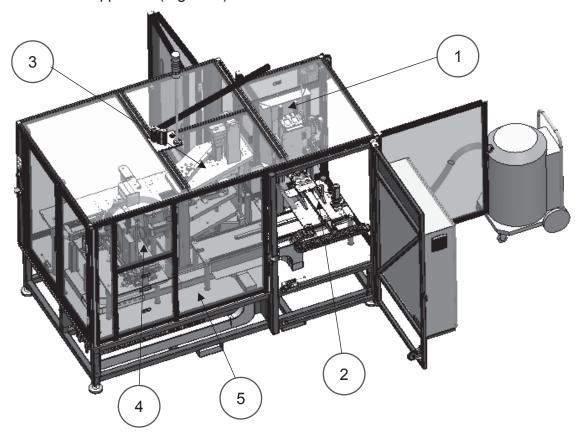


Figure 0 : Unité de production

Cette unité de production est constituée de 5 ensembles (Figure 0) :

- un magasin de stockage des plaques (1);
- un convoyeur de transfert (2);
- deux postes de découpe (Figure 1) :
 - o poste 1 : découpe des plaques en bandes (3) ;
 - o poste 2 : découpe des bandes en pièces (4) ;
- un dispositif d'évacuation des pièces (5).

L'étude portera sur le poste 2 : découpe des bandes en pièces.

Cette découpe est réalisée par la cisaille CNT4.

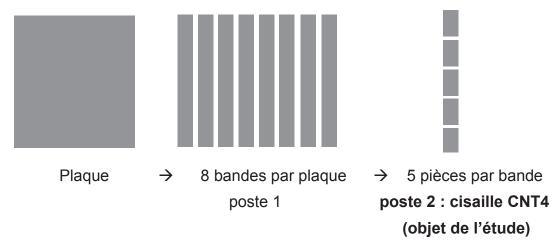


Figure 1 : Découpage des plaques

1.2. Descriptions fonctionnelle et structurelle de la cisaille CNT4

L'Annexe A présente le diagramme de définition de blocs détaillant les éléments structurels de la cisaille.

L'Annexe B (2 pages) présente le modèle 3D de la cisaille mettant en évidence les éléments structurels principaux du diagramme de définition de blocs ainsi que la nomenclature associée.

L'Annexe C présente un extrait du diagramme des exigences.

1.3. Cycle de fonctionnement de la cisaille CNT4

L'obtention des pièces finales à partir des bandes s'effectue en 4 étapes (Figure 2) :

- étape 1 : positionnement de la bande sous la cisaille CNT4 ;
- étape 2 : fermeture des porte-lames ;
- étape 3 : découpe de la bande ;
- étape 4 : ouverture des porte-lames et évacuation de la pièce.

Ce cycle s'exécute alors quatre fois par bande à découper.

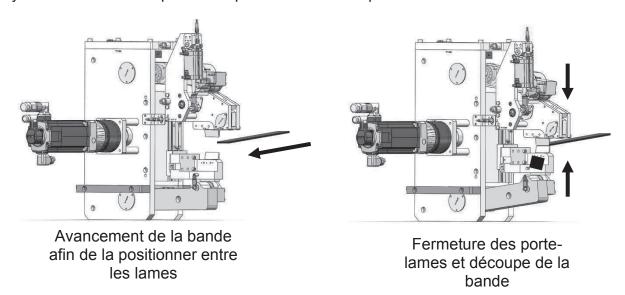


Figure 2 : Cycle de fonctionnement (étapes 1, 2 et 3)

1.4. Principe de fonctionnement

Le diagramme de définition de blocs (Annexe A) met en évidence deux chaînes fonctionnelles : la première permet d'assurer le déplacement vertical des deux porte-lames (sous-système de déplacement vertical) et la seconde permet d'assurer la découpe de la bande afin d'obtenir les cinq pièces (sous-système de coupe).

Lors des étapes 2 et 4, l'ensemble servomoteur / réducteur / accouplement entraîne en rotation l'arbre à cames (Annexe B). Le levier supérieur (respectivement, le levier inférieur) permet de transmettre et adapter ce mouvement de rotation en mouvement de translation verticale de l'ensemble porte-lame supérieur (respectivement, du porte-lame inférieur). Durant ces étapes, la tige du vérin est sortie.

Lors de l'étape 3, l'ensemble levier excentrique / excentrique menant / excentrique mené / plaque progressive permet de transmettre et adapter le mouvement de translation de la tige du vérin en mouvement désiré de la lame afin de réaliser la coupe de la bande. La rentrée de tige du vérin permet d'assurer le mouvement de coupe. Durant cette étape l'arbre à cames est immobile.

Les différentes parties abordées dans ce sujet visent à :

- partie 1 : identifier les différentes phases du cycle de fonctionnement ;
- partie 2 : analyser le comportement séquentiel de la partie commande afin d'assurer la cadence de coupe (exigence ld 1.5.1);
- partie 3 : vérifier l'aptitude de la chaîne cinématique de translation des porte-lames à satisfaire l'exigence d'amplitude de déplacement vertical (exigence ld 1.6.1);
- partie 4 : vérifier l'aptitude de la chaîne cinématique de coupe à satisfaire l'exigence de mouvement de la lame supérieure (exigences ld 1.1.1 et ld 1.1.2);
- partie 5 : vérifier l'aptitude du servomoteur à assurer le mouvement de fermeture des lames à la cadence souhaitée (exigence ld 1.5.1) puis à supporter une augmentation de cadence (évolution de l'exigence ld 1.5.1);
- partie 6 : vérifier que le système existant puisse supporter une augmentation d'effort de coupe (évolution de l'exigence ld 1.4.1) ;
- partie 7 : synthèse.

Les parties sont indépendantes et peuvent être traitées dans un ordre quelconque.

Il est cependant conseillé de commencer par traiter la partie 1 afin de s'approprier le support d'étude.

Partie 1 : Identification des phases de fonctionnement

Objectif: Identifier les différentes phases du cycle de fonctionnement de la cisaille.

Question 1 : À partir de la description du cycle et du principe de fonctionnement de la cisaille, compléter le document réponse DR1 en identifiant les phases de fonctionnement suivantes :

- A : porte-lames complètement ouverts ;
- B : porte-lames durant la phase de fermeture : déjà renseignée sur le DR1 ;
- C : porte-lames fermés, début de la coupe ;
- D : porte-lames fermés, phase de coupe ;
- E : porte-lames fermés, fin de coupe ;
- F : porte-lames durant la phase d'ouverture.

Partie 2 : Comportement séquentiel de la partie commande

Objectif : Analyser le comportement séquentiel de la partie commande afin d'assurer la cadence de coupe (exigence ld 1.5.1).

Le diagramme d'états simplifié relatif aux opérations de coupe de la cisaille est fourni en Annexe D.

Les entrées, les sorties et les variables associées sont mentionnées ci-dessous :

Entrées	Nature				
Cap 0	Valeur numérique du codeur absolu correspondant à la				
	position porte-lames ouverts				
Cap 1	Valeur numérique du codeur absolu correspondant à la				
Capi	position porte-lames fermés				
Capteur vérin s	Évènement : la tige du vérin arrive en position sortie				
Capteur vérin r	Évènement : la tige du vérin arrive en position rentrée				
Demande	Évènement : demande de départ de coupe				
Bande en	Évènement : la bande est positionnée				
position					
Pièce évacuée	Évènement : la pièce est évacuée				
Contour bout	Booléen : vrai quand le porte-lame supérieur est en position				
Capteur haut	haute				

Sorties		
M+ : rotation du servomoteur correspondant à la fermeture des porte-lames		
M- : rotation du servomoteur correspondant à l'ouverture des porte-lames		
V - : rentrée de la tige du vérin (correspond à la coupe)		
V+ : sortie de la tige du vérin		
Avancement : avancement de la bande afin de la positionner		
Évacuation pièce : évacuation de la pièce		

Variables Nb coupe : nombre de coupes à effectuer sur la bande Coupes : nombre de coupes effectivement réalisées sur la bande Cap : valeur numérique renvoyée par le codeur absolu

On se place dans la situation suivante : à t = 0 s, le pseudo état initial est activé, les portelames sont ouverts, la tige vérin est sortie et la variable *Nb coupe* vaut 4.

Question 2 : Sur le document réponse DR2 compléter les chronogrammes correspondant à l'activation (1) ou à la désactivation (0) des différents états ainsi que l'évolution de la variable « Coupes ».

Question 3 : À partir de la question précédente, compléter le tableau du document réponse DR2 en déterminant le temps nécessaire pour les opérations suivantes :

- t1: temps de fermeture des porte-lames ;
- t2: temps d'ouverture des porte-lames ;
- t₃: temps de rentrée de la tige du vérin ;
- t4 temps de sortie de la tige du vérin ;
- t₅: temps entre le début de la 1^{ere} coupe et le début de la deuxième coupe ;
- t₆: temps entre 2 activations de l'état « fermeture porte-lames ».

Question 4 : Conclure sur l'aptitude de la partie commande à satisfaire l'exigence ld 1.5.1 relative à la cadence de coupe.

Partie 3 : Étude de la cinématique des lames

Objectif: Vérifier l'aptitude de la chaîne cinématique de translation des porte-lames à satisfaire l'exigence d'amplitude de déplacement vertical (exigence ld 1.6.1).

Pour cette partie, on retient la modélisation cinématique fournie en Annexe E qui représente le mécanisme de mise en mouvement de l'ensemble porte-lame supérieur.

Géométrie de l'arbre à cames :

L'arbre à cames, solide S2, est mis en mouvement de rotation par le servomoteur. Le levier supérieur, solide S3 est en contact (point B) avec la came « avant » et le levier inférieur, avec la came « arrière ».

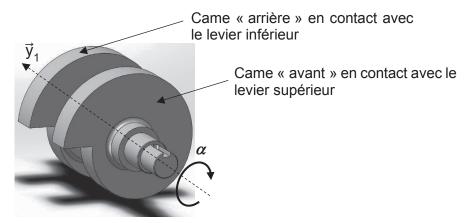


Figure 3 : Arbre à cames

Les deux cames sont identiques et leur géométrie est la suivante :

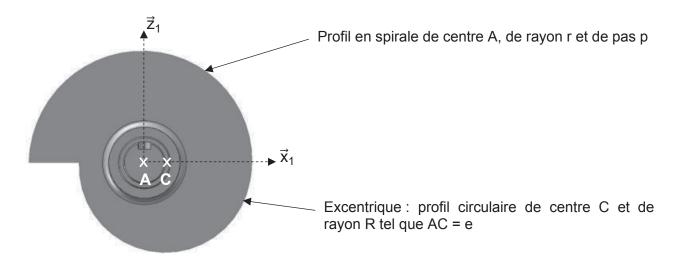


Figure 4 : Géométrie de l'arbre à cames (en position $\alpha = 0^{\circ}$, $\vec{x}_1 = \vec{x}_2$)

Le mouvement de fermeture des lames se décompose alors en deux phases :

- phase de déplacement rapide : les leviers sont en contact avec les cames sur le profil circulaire. Cette phase est telle que $35^{\circ} < \alpha \le 180^{\circ}$;
- phase de déplacement lent : les leviers sont en contact avec les cames sur le profil en spirale. Cette phase est telle que $180^{\circ} < \alpha \le 340^{\circ}$.

À l'issue de ces deux phases, les lames sont en contact avec la bande à découper et le mouvement de coupe est alors assuré par le sous-système de coupe.

Une fois la pièce découpée, le sous-système de coupe revient en position initiale et les lames s'ouvrent en inversant le sens de rotation de l'arbre à cames. Le mouvement d'ouverture débute donc par la phase de déplacement lent et s'achève par la phase de déplacement rapide.

La Figure 5 met en évidence les différentes positions particulières de l'arbre à cames.

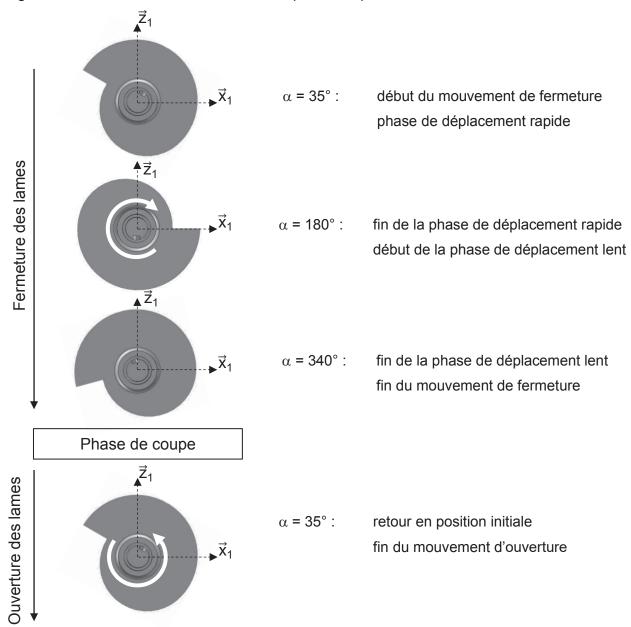


Figure 5 : Positions particulières de l'arbre à cames

Le paramétrage géométrique du contact entre la came avant et le levier supérieur est fourni en Annexe F.

On s'intéresse dans un premier temps à la phase de déplacement rapide du mouvement de fermeture des porte-lames.

Question 5: En écrivant la fermeture géométrique associée à la chaîne fermée de solides (S1)-(S2)-(S3)-(S1), exprimer la relation vectorielle entre les vecteurs \overrightarrow{AC} , \overrightarrow{CB} , \overrightarrow{BD} et \overrightarrow{DA} .

Question 6: À partir des figures planes de changement de base de l'Annexe E, exprimer les vecteurs \vec{x}_2 , \vec{x}_3 , \vec{z}_2 et \vec{z}_3 dans la base b₁.

Question 7: Montrer que la projection sur \vec{x}_1 et \vec{z}_1 de la relation vectorielle établie à la question 5 permet d'obtenir le système de deux équations scalaires de la forme suivante :

$$\begin{cases} A \cdot \cos \beta + B \cdot \sin \beta = \dot{L}_1 - e \cdot \cos \alpha \\ -A \cdot \sin \beta + B \cdot \cos \beta = L_2 + e \cdot \sin \alpha \end{cases}$$

Exprimer A et B en fonction des dimensions a, b et R.

La résolution du système d'équations précédent permet d'exprimer β , position angulaire du levier supérieur, en fonction de α , position angulaire de l'arbre à cames :

$$\beta = \pi - \tan^{-1} \left(\frac{B}{A} \right) - \cos^{-1} \left(\frac{L_1 - e \cdot \cos \alpha}{\sqrt{A^2 + B^2}} \right)$$

Question 8: En écrivant la fermeture géométrique associée à la chaîne fermée de solides (S1)-(S3)-(S4)-(S1), exprimer λ , écartement de la lame supérieure, en fonction de β , position angulaire du levier supérieur, et des dimensions L₂, c, d et f.

Les figures des documents réponses DR3 et DR4 synthétisent l'étude menée et montrent l'évolution de l'écartement de la lame supérieure (DR3) et de la position angulaire du levier supérieur (DR4) en fonction de la position angulaire de l'arbre à cames.

Question 9 : À partir du document réponse DR3, déterminer la course notée C_R de la lame supérieure lors de la phase de déplacement rapide.

Une étude similaire lors de la phase de déplacement lent (180° < $\alpha \le 340$ °) permet de conclure sur la course de la lame supérieure : $C_L = 3,5$ mm.

Par symétrie, la course de la lame inférieure est identique à celle de la lame supérieure. On note $C_T = C_R + C_L$ la course totale du porte-lame supérieur lors de la phase de fermeture.

Question 10 : Calculer C_T et conclure sur l'aptitude de cette chaîne cinématique à satisfaire l'exigence ld 1.6.1 du cahier des charges.

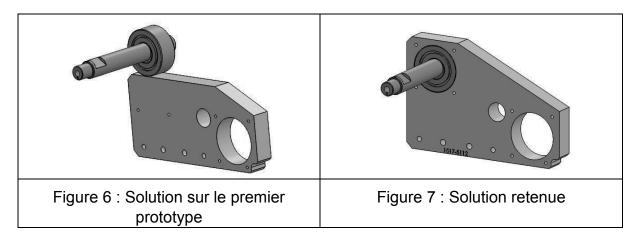
Partie 4 : Analyse du mécanisme d'orientation de la lame supérieure

Objectif global : Vérifier les exigences ld 1.1.1 et ld 1.1.2 relatives aux mouvements de la lame supérieure lors de la phase de coupe.

On donne sur l'Annexe G le schéma cinématique du mécanisme d'orientation de la lame supérieure.

Sous-objectif 1 : Déterminer les contraintes géométriques associées au mécanisme d'orientation de la lame supérieure.

Question 11 : À partir du schéma cinématique de l'Annexe G, établir le graphe des liaisons du mécanisme. On précisera clairement le nom et la ou les caractéristiques géométriques des liaisons (par exemple liaison glissière de direction \vec{z}).

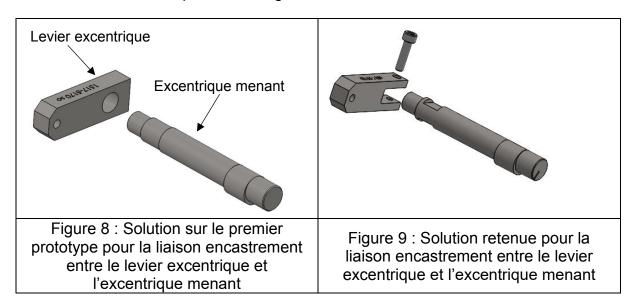

Question 12: Déterminer le degré d'hyperstatisme du mécanisme ainsi modélisé. Détailler la réponse en précisant selon la méthode retenue : le nombre d'équations (cinématiques ou statiques), le nombre d'inconnues (cinématiques ou statiques) et le nombre de mobilités (utiles et internes) en expliquant à quel(s) mouvement(s) et à quelle(s) pièce(s) ces mobilités sont associées.

Question 13 : Énoncer les avantages et les inconvénients d'un modèle hyperstatique. Justifier par rapport au mécanisme ainsi modélisé le degré d'hyperstatisme.

Question 14 : Donner rapidement, si elles existent, la ou les contraintes géométriques à imposer au mécanisme.

Sous-objectif 2 : Justifier la solution retenue pour la liaison entre l'excentrique menant et le porte lame.

Sur un premier prototype la liaison entre l'excentrique menant et la plaque progressive était réalisée comme indiqué sur la Figure 6. La solution finalement retenue par le constructeur est celle indiquée sur la Figure 7.



Question 15 : En quelques mots indiquer pourquoi la solution initiale (Figure 6) pour la liaison entre l'excentrique menant et la plaque progressive n'a pas été retenue.

Sous-objectif 3 : Justifier la solution retenue pour la liaison entre le levier excentrique et l'excentrique menant.

Le levier excentrique et l'excentrique menant sont en liaison encastrement.

Sur le premier prototype la liaison entre le levier excentrique et l'excentrique menant était réalisée par frettage comme indiqué sur la Figure 8. La solution finalement retenue par le constructeur est celle indiquée sur la Figure 9.

Question 16 : Proposer un ajustement entre le levier excentrique et l'excentrique menant permettant de satisfaire la solution de la Figure 8.

Question 17 : Expliquer en quelques mots pourquoi la solution de la Figure 8 n'a pas été retenue par le constructeur.

Question 18 : Pour la solution de la Figure 9, identifier le ou les éléments de mise en position et le ou les éléments de maintien en position.

Sous-objectif 4 : Validation de la cinématique retenue pour le mouvement de la lame supérieure.

Sur le document réponse DR5 figure le schéma cinématique partiel du guidage de la lame supérieure dans la position « tige du vérin sortie » ce qui correspond à la lame supérieure en position initiale.

Question 19: Pour la nouvelle position de l'excentrique menant, tracer sur le document réponse DR5 la nouvelle position du mécanisme (on fera clairement apparaître les nouvelles positions des points M, N, Q et F). Conclure sur la nature du mouvement de la lame.

On donne en Annexe I la documentation technique du vérin.

Sur le document réponse DR6, figure le mécanisme d'orientation de la lame supérieure dans la position « tige du vérin sortie ».

Question 20: Sur le document réponse DR6, déterminer graphiquement, lorsque le vérin passe de la position « tige du vérin sortie » à la position « tige du vérin rentrée », l'amplitude angulaire du mouvement du levier excentrique (on fera clairement apparaître toutes les constructions graphiques et on notera le résultat sur le document réponse DR6).

Une simulation numérique a permis d'obtenir les éléments suivants relatifs au mouvement de la lame supérieure lorsque le levier excentrique passe de sa position initiale (tige du vérin sortie) à sa position finale (tige du vérin rentrée).

Position initiale du point Q suivant \vec{z}_1 : - 66,87 mm

Position initiale du point F suivant \vec{z}_1 : - 67,69 mm

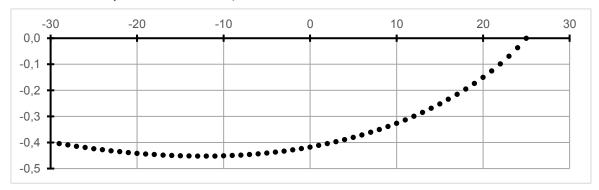


Figure 10 : Déplacement latéral en mm du point Q en fonction de l'angle du levier en degré par rapport à l'horizontal

Figure 11 : Déplacement latéral en mm du point F en fonction de l'angle du levier en degré par rapport à l'horizontal

Question 21: Sachant que la lame mesure 50 mm (distance entre les points Q et F sur l'Annexe G), conclure vis-à-vis des exigences ld 1.1.1 et ld 1.1.2.

<u>Partie 5 : Détermination du couple du servomoteur pour assurer la fermeture des porte-lames</u>

Objectif global : Vérifier l'aptitude du servomoteur à assurer le mouvement de fermeture des lames à la cadence souhaitée.

L'Annexe J présente la modélisation retenue pour cette partie.

Le torseur des actions mécaniques transmissibles par la liaison entre le solide i et le solide j

exprimé au point P dans la base
$$b_0$$
 sera noté $\{T_{i\rightarrow j}\}= \begin{cases} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{cases}_{b_0}$.

On note $\dot{x}(t) = \dot{x} = \frac{dx(t)}{dt}$ la dérivée de la variable x(t) par rapport au temps.

Sous-objectif 1 : Vérifier le dimensionnement des ressorts de rappel du porte-lame supérieur.

Les deux ressorts de rappel doivent permettre d'assurer la remontée de l'ensemble portelame supérieur lors de la phase d'ouverture des lames.

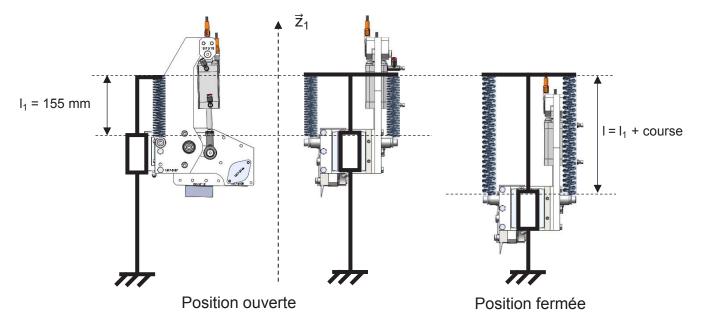


Figure 12 : Ensemble porte-lame / ressorts de rappel (le levier supérieur et la bande à découper ne sont pas représentés)

L'effort exercé par chaque ressort sur le porte-lame supérieur est noté : $\vec{F}_{res \to S4} = k \cdot \Delta L \cdot \vec{z}_1$ où k est la raideur en N·m⁻¹ et ΔL l'allongement en mètre du ressort.

La longueur à vide du ressort est notée l_0 avec l_0 = 130 mm.

La masse du porte-lame supérieur est notée m₄ avec m₄ = 4,5 kg.

L'accélération de la pesanteur est notée g avec g = 9,81 m·s⁻².

Question 22: Faire le bilan des actions mécaniques extérieures auxquelles est soumis l'ensemble porte-lame supérieur durant la phase d'ouverture des lames. Les différentes actions mécaniques seront notées sous forme de torseurs.

Par la suite, en position haute, l'action mécanique du levier supérieur sur le porte-lame est négligée devant les autres actions mécaniques.

Question 23: À l'aide du théorème de la résultante statique appliqué à l'ensemble portelame supérieur en projection sur \vec{z}_1 lorsque celui-ci est à l'équilibre en position haute, exprimer la raideur k des ressorts en fonction de m_4 , ΔL et g.

Les deux ressorts sont identiques et on donne $k = 1 \text{ N} \cdot \text{mm}^{-1}$.

Question 24 : Conclure sur l'aptitude des ressorts à assurer l'équilibre en position haute de l'ensemble porte-lame supérieur.

On note F_{max} l'effort équivalent maximal des deux ressorts sur l'ensemble porte-lame supérieur lorsque celui-ci est en position basse.

Question 25: Calculer F_{max} afin de satisfaire l'exigence ld 1.6.1.

Sous-objectif 2 : Vérifier l'aptitude du servomoteur à assurer le mouvement de fermeture des lames.

On isole l'ensemble Σ constitué de l'arbre à cames, des leviers supérieur et inférieur, de l'ensemble porte-lame supérieur, du porte-lame inférieur, de l'accouplement, du réducteur et de l'arbre moteur (Annexes B et J).

Question 26 : Exprimer les hypothèses justifiant la forme des matrices d'inertie de l'arbre à cames et du levier supérieur données en Annexe J.

Question 27 : Exprimer l'énergie cinétique galiléenne $Ec_{2/1}$ de l'arbre à cames en fonction de B_2 et de $\dot{\alpha}$.

Question 28 : Exprimer l'énergie cinétique galiléenne $Ec_{3/1}$ du levier supérieur en fonction de B_3 et de $\dot{\beta}$.

Question 29 : Exprimer l'énergie cinétique galiléenne $Ec_{4/1}$ de l'ensemble porte-lame supérieur en fonction de m_4 et de $\dot{\lambda}$.

Une simulation numérique a permis de mettre en évidence que la puissance maximale fournie par le servomoteur était atteinte pour la position α_{pic} = 65°.

Question 30 : En linéarisant $\lambda = f(\alpha)$ (document réponse DR3) autour de la position α_{pic} , mettre en évidence qu'il est possible d'exprimer $\dot{\lambda}$ sous la forme $\dot{\lambda} = K_{\lambda} \cdot \dot{\alpha}$. Déterminer alors graphiquement la valeur numérique de K_{λ} . On laissera apparaître les constructions utiles sur le document réponse DR3.

Question 31: En linéarisant β = f(α) (document réponse DR4) autour de la position α_{pic} , mettre en évidence qu'il est possible d'exprimer $\dot{\beta}$ sous la forme $\dot{\beta}$ = K $_{\beta}$ · $\dot{\alpha}$. Déterminer alors graphiquement la valeur numérique de K $_{\beta}$. On laissera apparaître les constructions utiles sur le document réponse DR4.

Le rapport de transmission du réducteur est noté $K_{red} = \frac{\dot{\alpha}}{\omega_m} = \frac{1}{40}$ où ω_m est la vitesse de rotation du servomoteur.

Question 32 : Exprimer alors l'énergie cinétique galiléenne $Ec_{2/1}$ de l'arbre à cames sous la forme $Ec_{2/1} = \frac{1}{2} \cdot J_2 \cdot \omega_m^2$ où J_2 est l'inertie équivalente de l'arbre à cames ramenée sur l'arbre moteur. Exprimer J_2 en fonction de B_2 et K_{red} .

Question 33: De même, exprimer l'inertie équivalente J_{34} de l'ensemble {S3 + S4} ramenée sur l'arbre moteur. Exprimer J_{34} en fonction de B_3 , m_4 , K_B , K_A et K_{red} .

Une étude similaire sur l'ensemble $\{S3i + S4i\}$ a permis de montrer que son inertie équivalente ramenée sur l'arbre moteur est : $J_{34i} = 0.75 \cdot J_{34}$.

L'inertie de l'ensemble réducteur+accouplement ramenée sur l'arbre moteur est donnée : $J_{RA} = 1 \times 10^{-4} \text{ kg} \cdot \text{m}^2$.

L'Annexe K donne les caractéristiques du servomoteur.

Question 34 : Calculer J_{MRA}, l'inertie de l'ensemble servomoteur+réducteur+accouplement ramenée sur l'arbre moteur.

L'énergie cinétique galiléenne $\text{Ec}_{\Sigma/1}$ de l'ensemble Σ est notée : $\text{Ec}_{\Sigma/1} = \frac{1}{2} \cdot J_{\text{eq}} \cdot \omega_{\text{m}}^2$.

Question 35: Exprimer Jeq en fonction de J2, J34 et JMRA.

Pour la suite, on donne $J_{eq} = 2.6 \times 10^{-4} \text{ kg} \cdot \text{m}^2$ et on fera les hypothèses suivantes :

- les puissances extérieures à prendre en compte pour le dimensionnement du servomoteur sont celles développées par les actions mécaniques suivantes :
 - l'action mécanique des ressorts sur l'ensemble porte-lame supérieur (la résultante de l'action mécanique des ressorts étant considérée constante et égale à F_{max} tout au long de la phase de fermeture des lames):

$$\{T_{res \to S4}\} = \begin{cases} F_{max} \cdot \vec{Z}_1 \\ \vec{O} \end{cases} \text{ avec } F_{max} = 100 \text{ N };$$

o l'action mécanique de la pesanteur sur le porte-lame inférieur :

$$\left\{\mathsf{T}_{\mathsf{pes}\to\mathsf{S4i}}\right\} = \left\{\begin{matrix} -\mathsf{m}_{4\mathsf{i}} \cdot \mathsf{g} \cdot \vec{\mathsf{z}}_1 \\ \vec{\mathsf{0}} \end{matrix}\right\};$$

o le couple moteur sur l'arbre moteur :

$$\{T_{mot \rightarrow arbre}\} = \begin{cases} \vec{0} \\ C_m \cdot \vec{y}_1 \end{cases}$$
;

toutes les liaisons sont supposées parfaites et sans frottements.

Question 36 : Exprimer la puissance développée par l'action mécanique des ressorts sur l'ensemble porte-lame supérieur en fonction de F_{max} , K_{λ} , K_{red} et ω_m .

Question 37 : Exprimer la puissance développée par l'action mécanique de la pesanteur sur l'ensemble porte-lame inférieur en fonction de m_{4i} , g, K_{λ} , K_{red} et ω_m .

Question 38 : Exprimer la puissance développée par le couple moteur sur l'arbre du moteur en fonction de C_m et ω_m .

Question 39 : En appliquant le théorème de l'énergie cinétique à l'ensemble Σ , exprimer C_m en fonction de F_{max} , m_{4i} , g, K_{λ} , K_{red} , J_{eq} et $\dot{\omega}_m$.

On donne le profil de vitesse du servomoteur sur la figure ci-dessous :

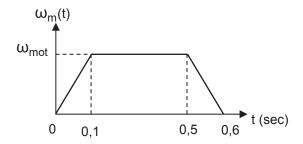


Figure 13: Profil de vitesse du servomoteur

La position α_{pic} est atteinte à la fin de la phase de mouvement uniformément accéléré du servomoteur.

La vitesse de rotation du servomoteur durant la phase de mouvement uniforme est ω_{mot} = 4 000 tr·min⁻¹.

Question 40: Calculer $\dot{\omega}_{m}$ pour la position α_{pic} .

Question 41 : Calculer alors C_m et à l'aide de l'Annexe K, conclure sur l'aptitude du servomoteur à assurer le mouvement de fermeture des lames.

Sous-objectif 3 : Vérifier l'aptitude du servomoteur à assurer le mouvement de fermeture des lames dans le cas d'une augmentation de la cadence.

Dans l'optique d'augmenter la cadence de production, on souhaite diviser par deux les temps d'accélération et de décélération du servomoteur tout en maintenant la vitesse de rotation en régime établi à ω_{mot} = 4 000 tr·min⁻¹.

Question 42 : Calculer la durée, notée d_c , de la phase de déplacement à vitesse constante ω_{mot} afin que l'angle total parcouru par le servomoteur reste inchangé et calculer l'augmentation de cadence engendrée.

Question 43 : Après avoir calculé la nouvelle accélération angulaire $\dot{\omega}_m$ et en supposant que K_{β} et K_{λ} restent inchangés, conclure sur l'aptitude du moteur à assurer le mouvement de fermeture des lames dans l'optique de cette augmentation de cadence.

<u>Partie 6 : Prise en compte de l'évolution du cahier des charges vis-à-vis de l'effort de coupe</u>

Objectifs:

- Vérifier qu'une augmentation de l'effort de coupe est possible avec le vérin actuel ;
- Vérifier que les sollicitations auxquelles est alors soumis l'axe du levier inférieur sont admissibles.

Sous objectif 1 : Détermination analytique de l'effort à fournir par le vérin pour la position initiale.

On fait les hypothèses suivantes :

- on se place dans le cas d'une modélisation plane de plan $(Q, \vec{x}_1, \vec{z}_1)$;
- on néglige l'action de pesanteur devant les autres actions mécaniques ainsi que les frottements :
- on se place dans la position initiale qui correspond à la tige du vérin sortie et on considère que la lame supérieure est à l'équilibre en position horizontale (voir schéma cinématique et paramétrage associé sur les Annexes G et H);
- l'action mécanique due à l'effort de coupe est modélisée par une force au point F :

$$\{T_{\text{eff}\rightarrow \text{lame}}\} = \begin{cases} F_{\text{coupe}} \cdot \vec{Z}_1 \\ \vec{0} \end{cases}$$
 avec $F_{\text{coupe}} = 12\ 000\ \text{N}$.

Question 44 : Montrer que l'action mécanique de l'excentrique mené sur l'ensemble lame supérieure est une force dont la droite d'action est (N, \vec{z}_5) .

Pour la suite, on note :

- l'action mécanique de l'excentrique mené sur la lame supérieure :

$$\{T_{men\acute{e}\rightarrow lame}\} = \sqrt[F]{F_{men\acute{e}\rightarrow lame} \cdot \vec{Z}_5} \ ;$$

- l'action mécanique de l'excentrique menant sur la lame supérieure :

$$\{T_{menant \rightarrow lame}\} = \begin{cases} F_x \cdot \vec{x}_1 + F_z \cdot \vec{z}_1 \\ \vec{0} \end{cases}.$$

Question 45 : Déterminer l'expression littérale de F_x en fonction de F_{coupe} et des grandeurs dimensionnelles.

Question 46 : Déterminer l'expression littérale du couple au niveau de la liaison pivot entre le bâti et l'excentrique menant, en fonction de F_{coupe} et des grandeurs dimensionnelles. Faire l'application numérique.

Question 47: Calculer l'effort que le vérin doit fournir (on pourra utiliser le document réponse DR6 pour mesurer la ou les dimensions nécessaires).

Sous objectif 2 : Validation du vérin.

Lors de la coupe, l'effort de coupe sur la lame n'est pas constant et le point de contact lame / bande à découper se déplace le long de la lame sur une distance de 40 mm.

Les résultats d'une simulation numérique prenant en compte ces éléments figurent cidessous.

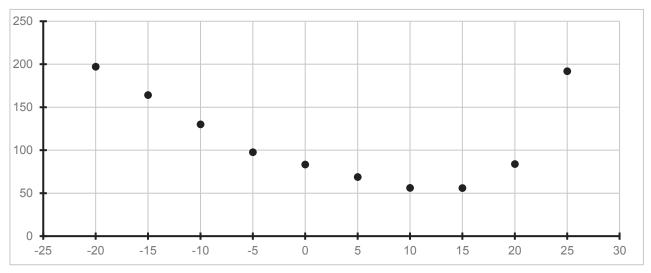


Figure 14 : Effort du vérin en Newton en fonction de l'angle du levier en degré par rapport à l'horizontale

Le constructeur souhaite conserver un taux de charge de 0,8 par rapport aux capacités du vérin.

Question 48 : À partir des caractéristiques du vérin données en Annexe I, conclure sur les capacités du vérin vis-à-vis de l'évolution du cahier des charges.

Sous objectif 3 : Vérifier la résistance mécanique de l'axe du levier inférieur vis-à-vis de l'évolution du cahier des charges.

La Figure 15 montre les solides en contact avec le levier inférieur :

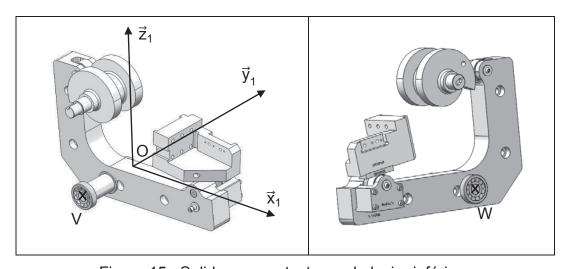


Figure 15 : Solides en contact avec le levier inférieur

Dans toute cette partie, on néglige l'action de la pesanteur devant les autres actions mécaniques ainsi que les frottements.

On fait l'hypothèse, dans un premier temps, que l'on peut considérer le problème comme mécaniquement plan dans le plan $(O, \vec{x}_1, \vec{z}_1)$.

Dans ce cas le bilan des actions mécaniques extérieures s'exerçant sur le levier inférieur est le suivant (voir Figure 15 et document réponse DR7) :

- action de l'axe du levier sur le levier inférieur, force dont le point O est un point de la droite d'action :
- action de l'arbre à cames sur le levier inférieur, force dont le point S est un point de la droite d'action ;
- action du porte lame inférieur sur le levier inférieur, force connue en T.

Question 49 : Sur le document réponse DR7, pour la position donnée, représenter la direction de la force de l'arbre à cames sur l'ensemble levier inférieur.

Question 50: Sur le document réponse DR7, déterminer graphiquement la force de l'axe du levier sur le levier inférieur (on laissera apparaître les différents tracés sur le document réponse DR7 et on indiquera la valeur de la norme $\|\vec{\mathsf{F}}_{\mathsf{axe}\to\mathsf{levier}}\|$ de cette force).

Question 51 : Expliquer en quelques mots pourquoi, l'hypothèse d'un problème mécaniquement plan est discutable.

La Figure 16 montre la géométrie de l'axe du levier inférieur :

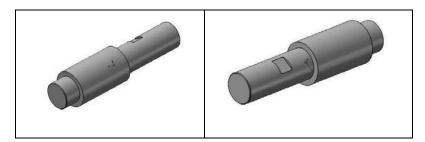


Figure 16 : Géométrie de l'axe du levier inférieur

Le matériau de l'axe du levier inférieur est de l'acier 40NiCrMo7 dont les principales caractéristiques mécaniques sont :

Limite	Module de	Coefficient de	Masse	Module
élastique	cisaillement	Poisson	volumique	d'Young
850 MPa	80 GPa	0,28	7 850 kg·m ⁻³	210 000 MPa

Question 52: Les hypothèses de la théorie des poutres concernant la forme et le matériau de l'axe du levier inférieur sont-elles vérifiées ? On attend un rapide énoncé des différentes hypothèses et leur vérification.

Pour la suite, on suppose que les hypothèses de la théorie des poutres sont vérifiées et on modélise l'axe du levier inférieur par un cylindre de section circulaire constante de diamètre 24 mm.

La liaison entre l'axe du levier inférieur et le bâti est réalisée par deux roulements.

On donne ci-dessous le schéma cinématique et le paramétrage associés à cette liaison :

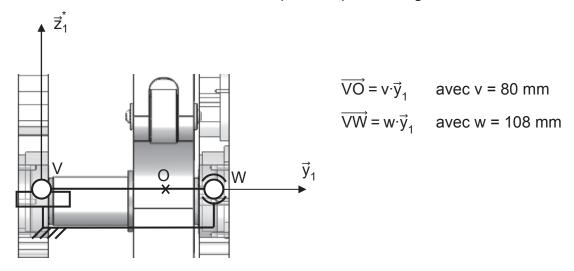


Figure 17 : Schéma cinématique et paramétrage associé de la liaison entre l'axe du levier inférieur et le bâti

Question 53: Exprimer la forme des torseurs d'actions mécaniques transmissibles par les liaisons aux points V et W dans la base $(\vec{x}_1^*, \vec{y}_1, \vec{z}_1^*)$.

Une étude, non détaillée ici, a permis d'évaluer, dans le cas le plus défavorable, l'action mécanique du levier inférieur sur l'axe du levier sans prendre en compte l'hypothèse du problème plan :

$$\{T_{lev\rightarrow axe}\} = \begin{cases} \overrightarrow{F}_{lev} = -F_{lev} \cdot \overrightarrow{Z}_1^* \\ \overrightarrow{L}_{lev} = -L_{lev} \cdot \overrightarrow{X}_1^* \end{cases} \quad \text{avec } F_{lev} = 18\ 000\ N \qquad \text{et} \qquad L_{lev} = 300\ N \cdot m.$$

Question 54 : Déterminer littéralement les actions mécaniques de liaisons aux points V et W, en fonction de F_{lev}, L_{lev} et des grandeurs dimensionnelles v et w.

Question 55: Exprimer le torseur de cohésion dans les tronçons (VO) et (OW) en fonction de v, w, F_{lev}, L_{lev}.

Question 56 : Pour chaque tronçon, donner la nature de la ou des sollicitations.

On donne ci-dessous l'évolution de la contrainte normale dans la fibre inférieure de l'axe du levier inférieur :

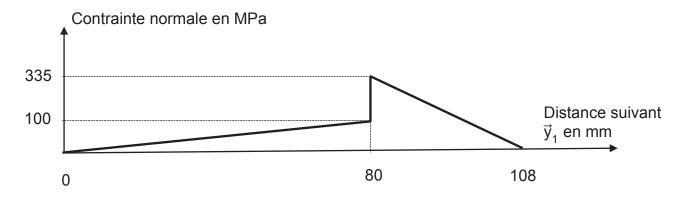
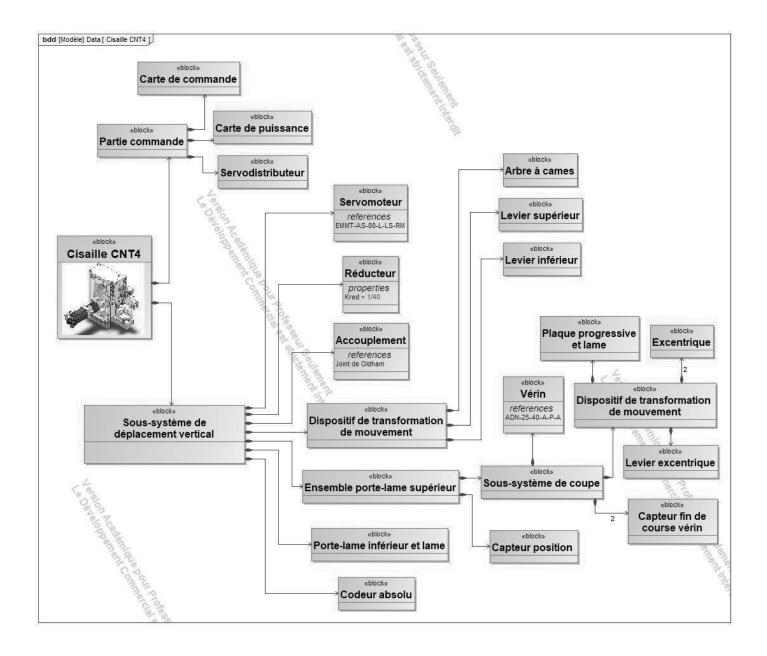


Figure 18 : Contrainte normale en MPa dans la fibre inférieure

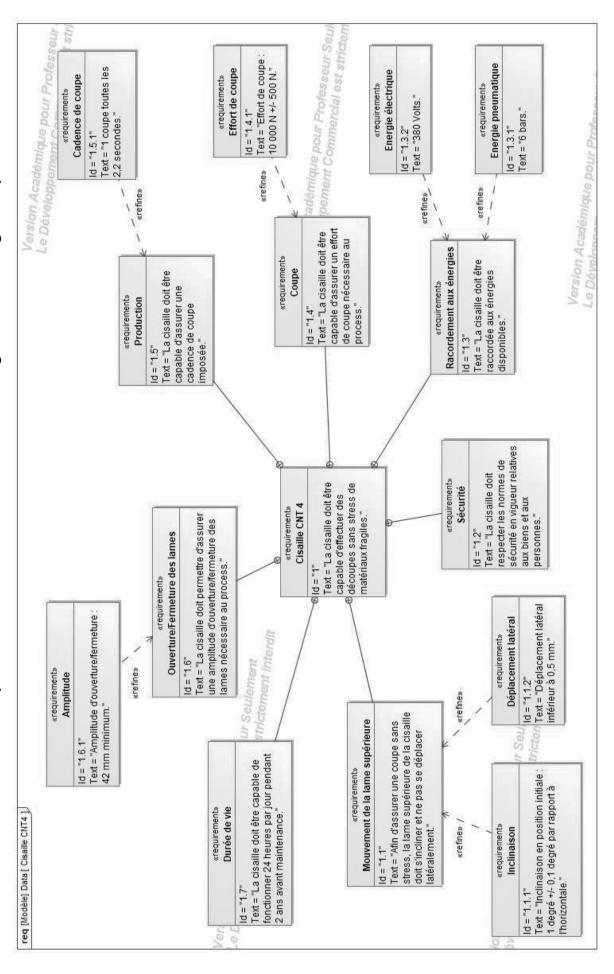

Question 57 : En faisant l'hypothèse que la contrainte normale est prépondérante devant la contrainte tangentielle, conclure sur la résistance mécanique de l'axe du levier inférieur pour l'évolution du cahier des charges.

Partie 7 : Synthèse

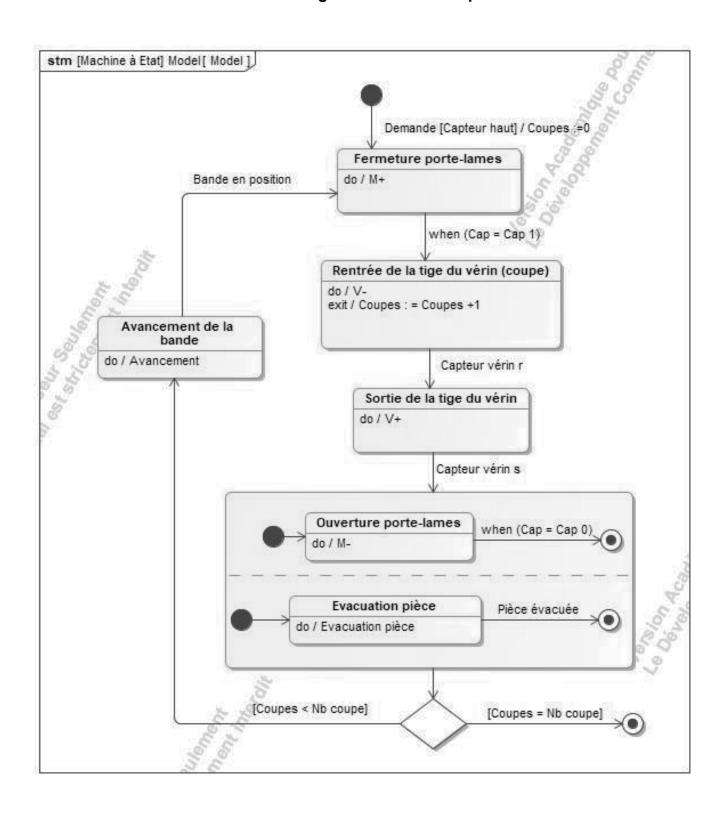
Question 58: Au regard de l'étude menée, faire une synthèse, sous forme de tableau, sur la validation ou non de chaque exigence vérifiée sur l'existant (parties 1 à 5) et sur l'évolution du cahier des charges (fin de partie 5 et partie 6).

Par l'analyse de l'écart entre les performances simulées et les performances visées, discuter sur les éventuelles dispositions / choix technologiques à entreprendre.

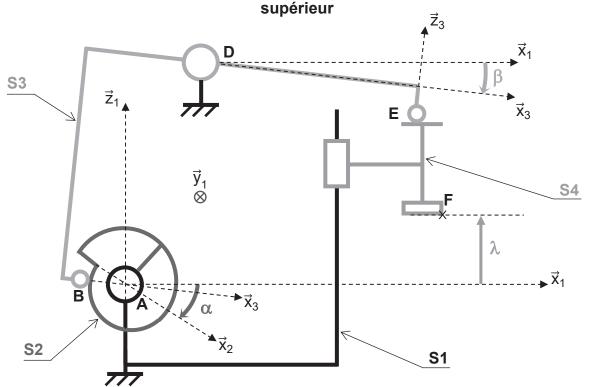
Annexe A - Description structurelle de la cisaille CNT4 : Diagramme de définition de blocs


Annexe B - Description structurelle de la cisaille CNT4 : Modèle 3D

Certaines pièces sont cachées pour améliorer la lisibilité.


Annexe B - Description structurelle de la cisaille CNT4 : Nomenclature

Repère	Nb	Description	Matière	Observation
CNT4-19	1	Axe levier inférieur	40NiCrMo7	Trempé
CNT4-18	1	Patin de guidage inférieur		
CNT4-17	1	Rail de guidage		
CNT4-16	1	Lame inférieure		
CNT4-15	1	Porte-lame inférieur	AlZnMgCu1.5	
CNT4-14	2	Ressort de rappel		
CNT4-13	1	Vérin		FESTO ADN-25-40-A-P-A
CNT4-12	1	Excentrique mené		
CNT4-11	1	Excentrique menant		
CNT4-10	1	Levier excentrique		
CNT4-9	1	Plaque support vérin		
CNT4-8	1	Lame supérieure		
CNT4-7	1	Plaque progressive		
CNT4-6	1	Levier inférieur		
CNT4-5	1	Levier supérieur		
CNT4-4	1	Arbre à cames		
CNT4-3	1	Accouplement		
CNT4-2	1	Réducteur		
CNT4-1	1	Servomoteur		FESTO EMMT-AS-80-L-LS-RM


Annexe C - Description fonctionnelle de la cisaille CNT4 : Diagramme des exigences partiel

Annexe D - Diagramme d'états simplifié

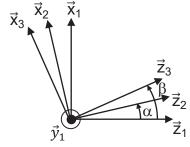
Annexe E - Modélisation cinématique de la translation de l'ensemble porte-lame

<u>Données</u>: on définit les bases $b_i = (\vec{x}_i, \vec{y}_i, \vec{z}_i)$

S1: le bâti, supposé fixe, de repère associé $R_1(A, \vec{x}_1, \vec{y}_1, \vec{z}_1)$.

S2: **l'arbre à cames**, de repère associé $R_2(A, \vec{x}_2, \vec{y}_2, \vec{z}_2)$ en liaison pivot d'axe (A, \vec{y}_1) avec le bâti tel que $\alpha(t) = (\vec{x}_1, \vec{x}_2) = (\vec{z}_1, \vec{z}_2)$.

S3 : le levier supérieur, de repère associé $R_3(D, \vec{x}_3, \vec{y}_3, \vec{z}_3)$ en liaison pivot d'axe (D, \vec{y}_1) avec le bâti tel que $\beta(t) = (\vec{x}_1, \vec{x}_3) = (\vec{z}_1, \vec{z}_3)$.

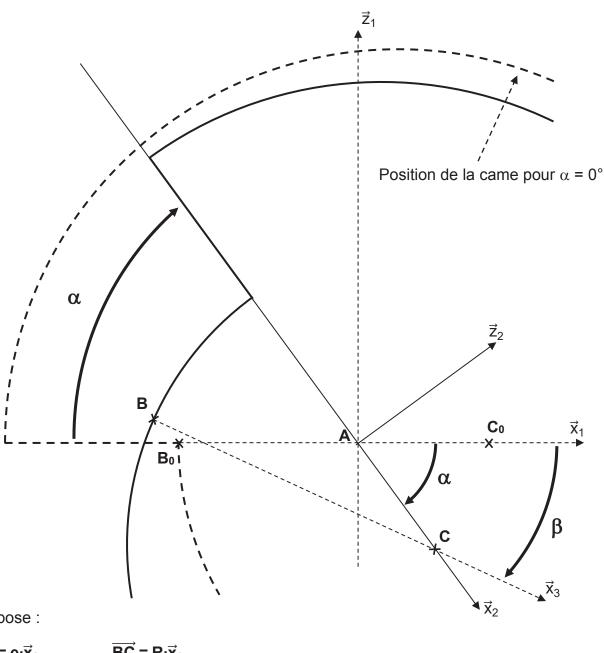

Le contact entre le levier supérieur et l'arbre à cames est modélisé par une liaison sphère plan en B de normale \vec{x}_3 , voir détail en Annexe F.

S4 : l'ensemble porte-lame supérieur de repère associé $R_4(F, \vec{x}_1, \vec{y}_1, \vec{z}_1)$ en liaison glissière de direction \vec{z}_1 avec le bâti tel que $\lambda(t) = \overrightarrow{AF} \cdot \vec{z}_1$.

Le contact entre l'ensemble porte-lame supérieur et le levier supérieur est modélisé par une liaison sphère plan en E de normale \vec{z}_1 .

On pose :
$$\overrightarrow{AD} = L_1 \cdot \vec{x}_1 + L_2 \cdot \vec{z}_1$$
 $\overrightarrow{AF} = L_3 \cdot \vec{x}_1 + \lambda \cdot \vec{z}_1$ $\overrightarrow{BD} = a \cdot \vec{x}_3 + b \cdot \vec{z}_3$ $\overrightarrow{DE} = c \cdot \vec{x}_3 - d \cdot \vec{z}_3$ $\overrightarrow{EF} = \mu \cdot \vec{x}_1 - f \cdot \vec{z}_1$ ($\mu = 0$ pour $\alpha = 0^\circ$)

où L₁, L₂, L₃, a, b, c, d et f sont des longueurs constantes et λ (écartement de la lame supérieure) et μ sont des longueurs variables.

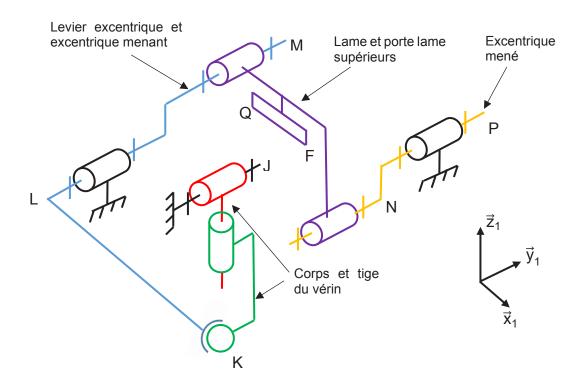


Figures planes de changement de base 26/38

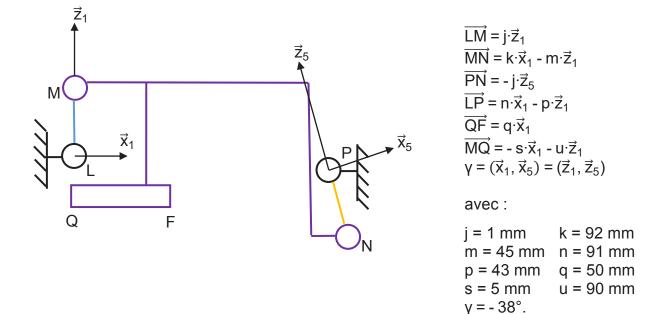
Annexe F - Paramétrage du contact came avant/levier supérieur

Lors de la phase de rapprochement rapide des lames, le point B de contact entre la came avant et le levier supérieur se déplace sur un demi-cercle de centre C et de rayon R.

 B_0 et C_0 correspondent aux positions des points B et C pour $\alpha = 0^{\circ}$.



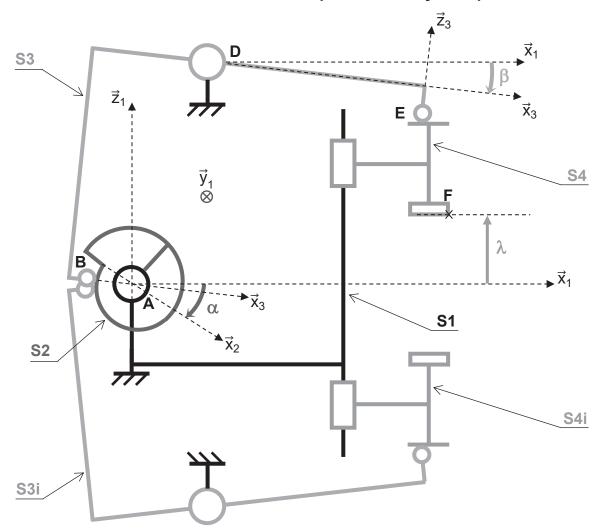
On pose:


$$\overrightarrow{AC} = e \cdot \overrightarrow{x}_2$$
 $\overrightarrow{BC} = R \cdot \overrightarrow{x}_3$

où e, excentration de la partie inférieure de la came et R son rayon sont des longueurs constantes.

Annexe G - Schéma cinématique du mécanisme d'orientation de la lame supérieure

Annexe H - Schéma cinématique et paramétrage associé pour le mécanisme de coupe en position initiale


Annexe I - Vérin compact ADN-25-40-A-P-A

Caractéristique	Valeur
Course	40 mm
Diamètre du piston	25 mm
Diamètre de la tige	10 mm
Filetage de la tige du piston	M8
Fluide de service	Air comprimé
Pression de service	0,06 MPa à 1 MPa
Pression de service	0,6 bar à 10 bars
Mode de fonctionnement	Double effet
Raccord pneumatique	M5

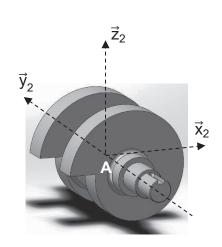
Source FESTO

Annexe J - Modélisation pour l'étude dynamique

<u>Hypothèses</u>: toutes les liaisons sont supposées parfaites.

 $\underline{\text{Donn\'ees}}: \text{ on d\'efinit les bases } b_i = (\vec{x}_i, \ \vec{y}_i, \ \vec{z}_i)$

S1 : le bâti, supposé fixe, de repère associé $R_1(A, \vec{x}_1, \vec{y}_1, \vec{z}_1)$.

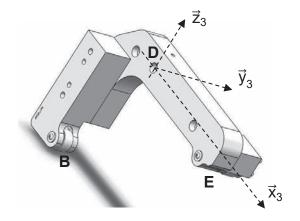

S2 : l'arbre à cames, de repère associé $R_2(A, \vec{x}_2, \vec{y}_2, \vec{z}_2)$.

Masse: m2

Centre d'inertie supposé en A.

Matrice d'inertie :

$$I_{A}(S2) = \begin{pmatrix} A_{2} & 0 & 0 \\ 0 & B_{2} & 0 \\ 0 & 0 & A_{2} \end{pmatrix}_{b_{2}}$$

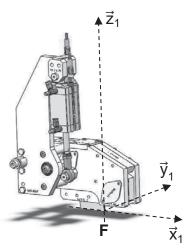

S3 : le levier supérieur, de repère associé $R_3(D, \vec{x}_3, \vec{y}_3, \vec{z}_3).$

Masse: m₃

Centre d'inertie supposé en D.

Matrice d'inertie :

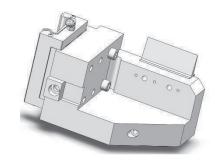
$$I_{D}(S3) = \begin{pmatrix} A_{3} & 0 & -E_{3} \\ 0 & B_{3} & 0 \\ -E_{3} & 0 & C_{3} \end{pmatrix}_{b_{3}}$$



S3i : le levier inférieur, identique au levier supérieur

S4 : l'ensemble porte-lame supérieur de repère associé $R_4(F,\vec{x}_1,\,\vec{y}_1,\,\vec{z}_1).$

Masse : $m_4 = 4,5 \text{ kg}$.


Centre d'inertie noté G₄.

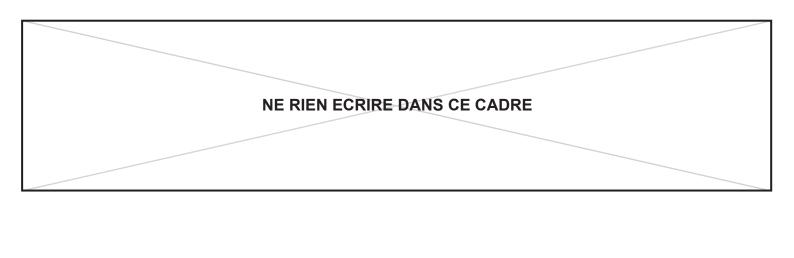
S4i : l'ensemble porte-lame inférieur

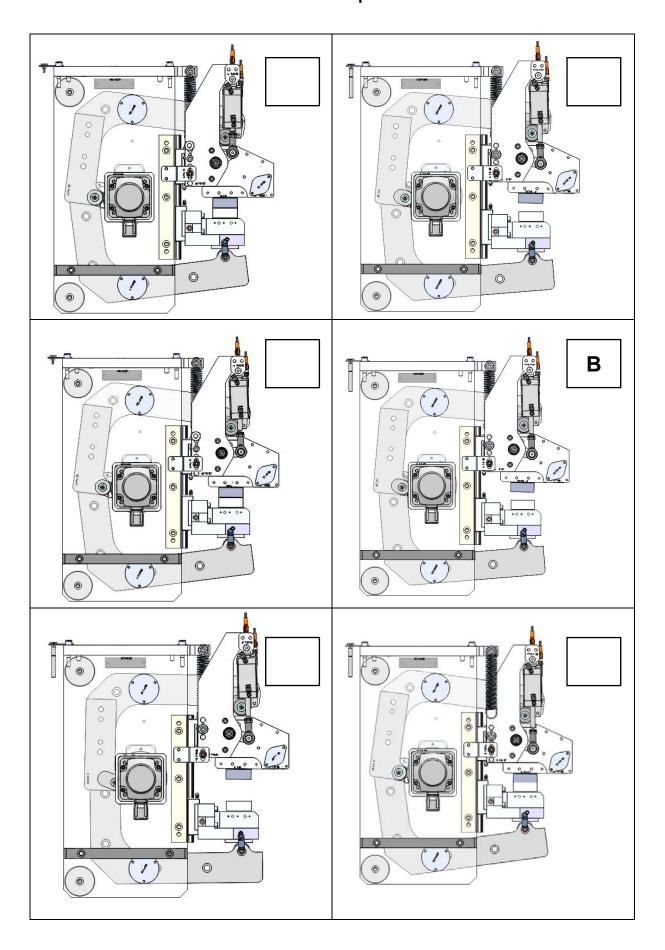
Masse : $m_{4i} = 1,2 \text{ kg}$.

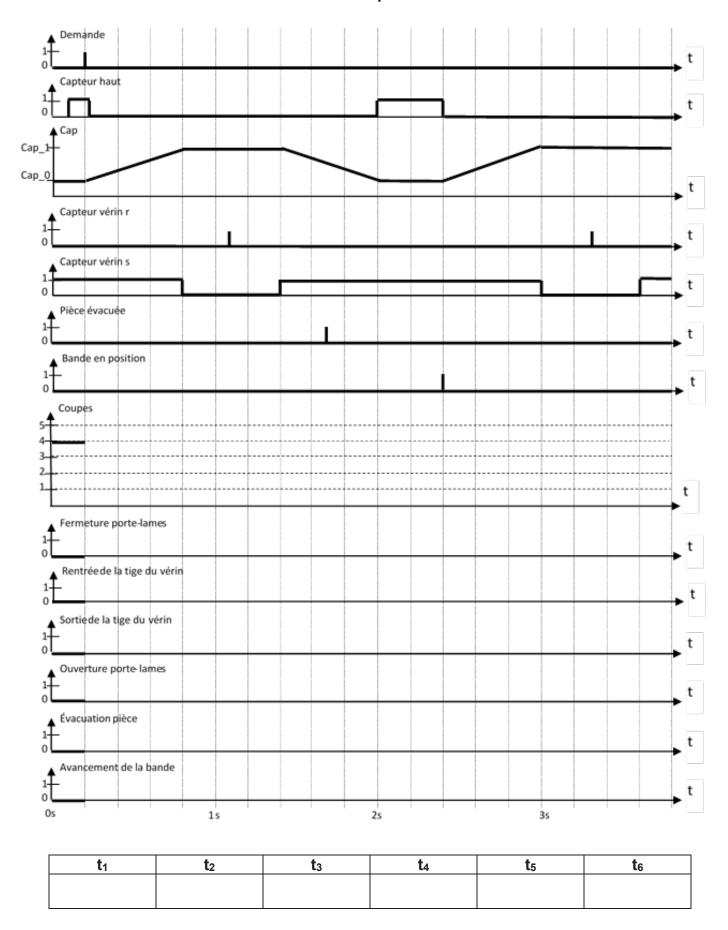
Centre d'inertie noté G4i.

Annexe K - Servomoteur EMMT-AS-80-L-LS-RM

	T
Caractéristique	Valeur
Conforme à la norme	CEI 60034
Position de montage	Indifférente
Degré de protection	IP40
Durée de vie du palier en conditions nominales	20 000 h
Couple nominal	2,9 N·m
Régime nominal	3 000 tr·min ⁻¹
Vitesse de rotation maximale	6 400 tr·min ⁻¹
Puissance nominale du moteur	910 W
Courant d'arrêt permanent	6,7 A
Courant nominal du moteur	5,5 A
Courant de pointe	27,3 A
Inertie totale du servomoteur	1,5 kg·cm²
Masse du produit	3 290 g
Indicateur de position du rotor	Codeur absolu, multi tours
Indicateur de position du rotor de nombre absolu de tours détectables	4 096
Indicateur de position du rotor, valeurs de position par tour	524 288
Résolution d'indicateur de position du rotor	19 bit

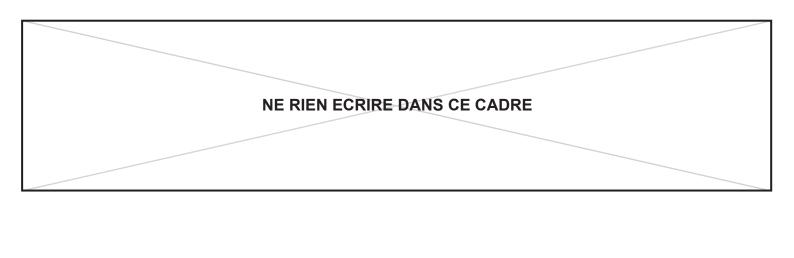

Source FESTO

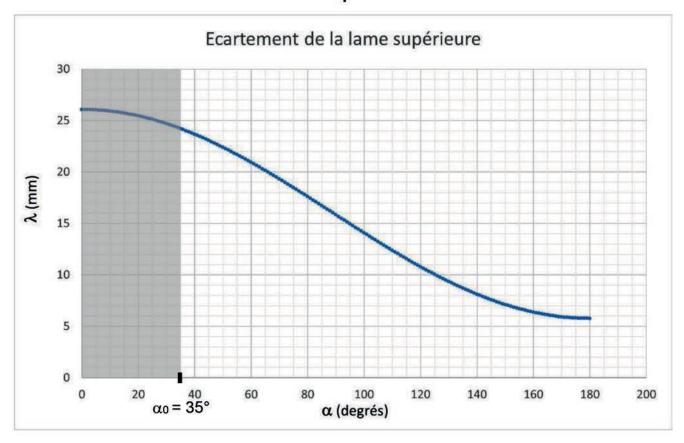

Modèle CMEN v3										 _		_				_		=
Nom de fa (Suivi, s'il y a lieu, du nom d																		
Prénc	om(s) :																	
	méro didat :											é(e) le :		/]/		
Cadre réservé aux candidats de concours de recrutement et examens professionnels																		
Concours:																		
Cadre réservé aux candidats d'examens et du concours général																		
Examen : Série / Spécialité :																		
Epreuve - Matièr	e:									 	 Ses	sion	:	 	 		 	


EDE MEC 1

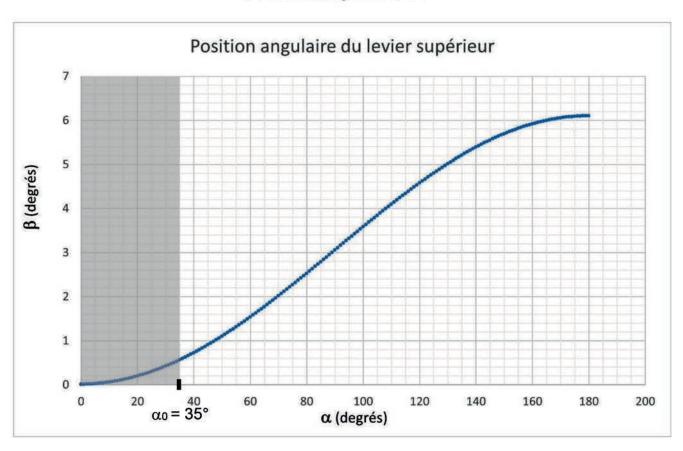
DR1 - DR2

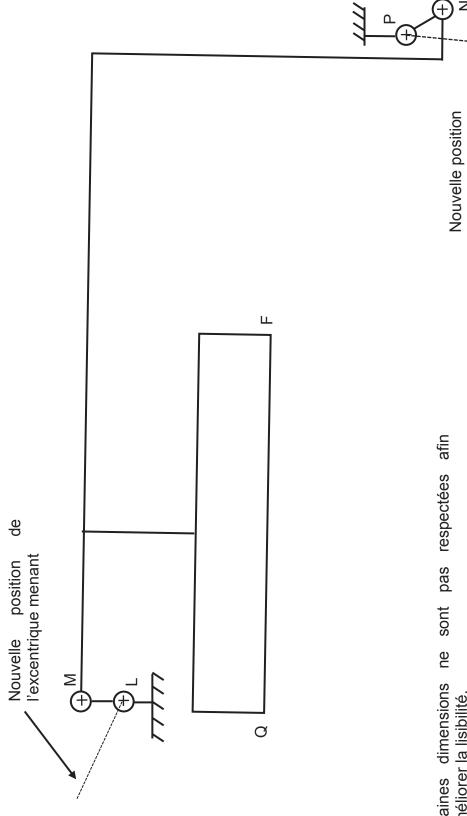
Tous les documents réponses sont à rendre, même non complétés.




Modèle CMEN v3								
Nom de famille : (Suivi, s'il y a lieu, du nom d'usage)								
Prénom(s) :								
Numéro Candidat :	Né(e) le :							
Cadre réservé aux candidats de concours de recrutement et examens professionnels								
Concours :								
Cocher une seule case parmi les six types de concours suivants : Cocher public OU privé UNIQUEMENT pour les concours enseignants : public privé								
Examen professionnel pour l'avancement au grade de :								
Cadre réservé aux candidats d'examens et du concours général								
Examen : Série / Spécialité :								
Epreuve - Matière :	Session:							

EDE MEC 1

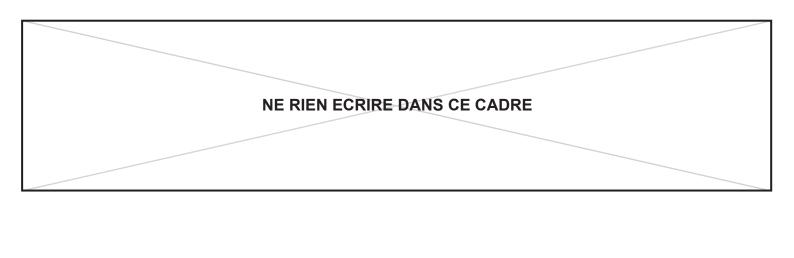

DR3 - DR5

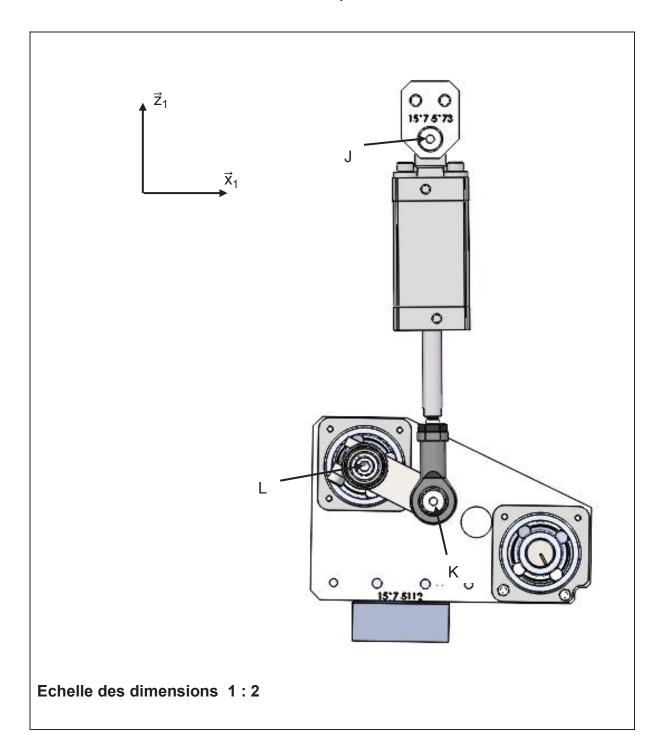

Tous les documents réponses sont à rendre, même non complétés.

Document réponse DR4

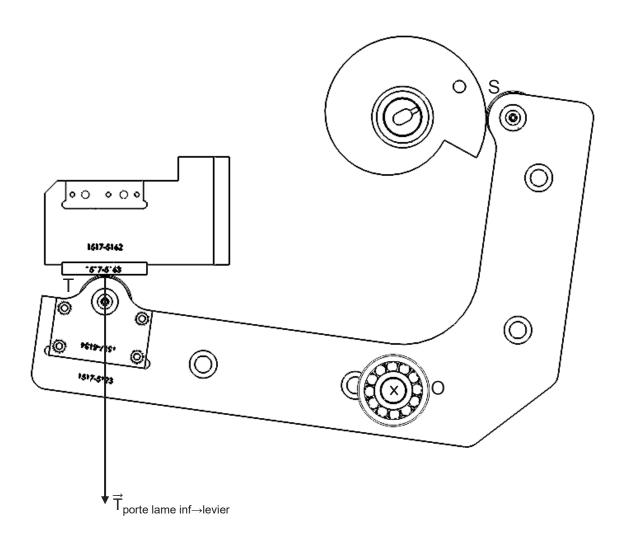
Certaines dimensions ne sont pas respectées afin d'améliorer la lisibilité.

Z


de l'excentrique mené


Modèle CMEN v3								
Nom de famille : (Suivi, s'il y a lieu, du nom d'usage)								
Prénom(s) :								
Numéro Candidat :	Né(e) le :							
Cadre réservé aux candidats de concours de recrutement et examens professionnels								
Concours :								
Cocher une seule case parmi les six types de concours suivants : Cocher public OU privé UNIQUEMENT pour les concours enseignants : public privé								
Examen professionnel pour l'avancement au grade de :								
Cadre réservé aux candidats d'examens et du concours général								
Examen : Série / Spécialité :								
Epreuve - Matière :	Session:							

EDE MEC 1


DR6 - DR7

Tous les documents réponses sont à rendre, même non complétés.

Valeur de l'amplitude angulaire du mouvement du levier :

Echelle des dimensions 1 : 2

Echelle pour la représentation des forces : 1 cm pour 2 000 N