

SESSION 2025

CAPES ET CAFEP

Concours externe - Troisième concours

Section

MATHÉMATIQUES

Section

LANGUES RÉGIONALES

option BRETON

Épreuve disciplinaire

L'épreuve permet d'apprécier la connaissance des notions du programme et l'aptitude à les mobiliser pour résoudre des problèmes.

Elle sollicite également les capacités de raisonnement, de démonstration et d'expression écrite du candidat.

Le sujet est constitué d'un ou plusieurs problèmes.

Durée: 5 heures

L'usage de la calculatrice est autorisé dans les conditions relevant de la circulaire du 17 juin 2021 BOEN du 29 juillet 2021.

L'usage de tout ouvrage de référence, de tout dictionnaire et de tout autre matériel électronique est rigoureusement interdit.

Il appartient au candidat de vérifier qu'il a reçu un sujet complet et correspondant à l'épreuve à laquelle il se présente.

Si vous repérez ce qui vous semble être une erreur d'énoncé, vous devez le signaler très lisiblement sur votre copie, en proposer la correction et poursuivre l'épreuve en conséquence. De même, si cela vous conduit à formuler une ou plusieurs hypothèses, vous devez la (ou les) mentionner explicitement.

NB: Conformément au principe d'anonymat, votre copie ne doit comporter aucun signe distinctif, tel que nom, signature, origine, etc. Si le travail qui vous est demandé consiste notamment en la rédaction d'un projet ou d'une note, vous devrez impérativement vous abstenir de la signer ou de l'identifier. Le fait de rendre une copie blanche est éliminatoire.

Cette épreuve est constituée de trois problèmes indépendants.

Notations

N désigne l'ensemble des nombres entiers naturels.

N* désigne l'ensemble des nombres entiers naturels non nuls.

R désigne l'ensemble des nombres réels.

 \mathbb{R}^* désigne l'ensemble des nombres réels non nuls.

Problème 1: VRAI – FAUX

Pour chacun des items suivants, préciser si l'assertion finale est vraie ou fausse et justifier la réponse donnée. Toute réponse non argumentée ne sera pas prise en compte.

Calculs dans \mathbb{R}

- Un article taxé à 10% a été payé 110 euros TTC (toutes taxes comprises).
 Le montant de la taxe est de 11 euros.
- 2. Soient α et β deux nombres réels. Le nombre $\alpha^2 + \alpha\beta + \beta^2$ est positif.
- 3. Soient a et b deux nombres réels. La négation de (a > 1 et $b > 1 \Rightarrow a + b > 2)$ est $(a \le 1$ ou $b \le 1 \Rightarrow a + b \le 2)$.
- 4. On considère l'équation d'inconnue réelle x : $\cos(2025x) = 1$. Cette équation admet 2025 solutions dans l'intervalle $]-\pi;\pi]$.

Arithmétique

- 5. Soit $f: \mathbb{N} \to \mathbb{N}$ l'application définie pour tout $n \in \mathbb{N}$ par $f(n) = 8n^2 10n + 3$. L'application f est injective.
- 6. Pour tout entier naturel n, $2^{3n} 1$ est divisible par 7.
- 7. Soient a, b et n trois entiers naturels avec n non nul tels que a est congru à b modulo n. Pour tout entier x, on a $x^a \equiv x^b [n]$.
- 8. Soit n un entier strictement positif. La somme des carrés des n premiers entiers naturels non nuls est égale à $\frac{n(n+1)(2n+1)}{6}$.

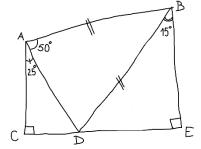
Analyse réelle

- 9. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=-3$ et, pour tout entier naturel $n,\ u_{n+1}=-4\ u_n$. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.
- 10. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie sur \mathbb{N}^* par $u_n=(-1)^n+\frac{1}{n}$. La suite $(u_n)_{n\in\mathbb{N}^*}$ n'admet pas de limite.

- 11. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels admettant une limite finie strictement positive. La suite $(u_n)_{n\in\mathbb{N}}$ est positive à partir d'un certain rang.
- 12. Soit f une fonction définie et strictement décroissante sur \mathbb{R} , à valeurs dans \mathbb{R} . Soit u_0 un réel et soit $(u_n)_{n\in\mathbb{N}}$ la suite de premier terme u_0 et telle que pour tout entier naturel n, $u_{n+1}=f(u_n)$. La suite $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante.
- 13. L'équation $e^x = x + 1$ admet 0 comme unique solution sur \mathbb{R} .
- 14. Soient I un intervalle de \mathbb{R} , a un réel de I et f une fonction, définie sur I, à valeurs dans \mathbb{R} . Si f est continue en a, alors f est dérivable en a.
- 15. Soit f la fonction définie pour tout réel x par $f(x) = \int_0^x e^{-t} dt$. La fonction f est bornée sur $[0; +\infty[$.
- 16. Soit $(I_n)_{n\in\mathbb{N}^*}$ la suite définie sur \mathbb{N}^* par $I_n=\int_0^1 x^n \mathrm{e}^{-x} dx$. La suite $(I_n)_{n\in\mathbb{N}^*}$ est croissante.
- 17. Soit $(I_n)_{n \in \mathbb{N}^*}$ la suite définie sur \mathbb{N}^* par $I_n = \int_1^e t (\ln(t))^n dt$. Pour tout entier naturel n non nul, $I_{n+1} = \frac{1}{2} (e^2 + (n+1)I_n)$.

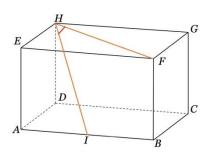
Géométrie

18. La figure codée ci-contre, réalisée à main levée, représente une configuration géométrique du plan affine euclidien. Les points C, D et E de cette configuration sont alignés.



- 19. On considère un triangle ABC du plan affine euclidien tel que AB = 4, BC = 8 et $CA = 4\sqrt{3}$. L'angle géométrique \widehat{ABC} mesure $\frac{\pi}{3}$ radians.
- 20. Dans un repère orthonormé direct (O, \vec{t}, \vec{j}) du plan, on considère les points A(1; 2), B(3; 1) et $M(5x; x^2 1)$ où x est un nombre réel. Les points A, B et M sont alignés si et seulement si x = 1.
- 21. On considère un plan (*P*) de l'espace et trois points *A*, *B* et *C* non alignés n'appartenant pas à (*P*), tels que la droite (*AB*) coupe (*P*) en *C'*, la droite (*BC*) coupe (*P*) en *A'* et la droite (*AC*) coupe (*P*) en *B'*. Les points *A'*, *B'* et *C'* sont alignés.

22. On considère un pavé droit ABCDEFGH d'un espace affine euclidien de dimension 3, avec AB = 5, AD = 4 et AE = 3 et I le milieu de [AB], conformément à la figure ci-contre. La mesure de l'angle \widehat{FHI} arrondie au degré près est 45° .



23. Le nombre complexe $e^{2i\frac{\pi}{3}} + e^{-i\frac{\pi}{2}}$ admet $\frac{\pi}{12}$ pour argument.

Algèbre linéaire

- 24. Soit E un \mathbb{R} espace vectoriel muni d'un produit scalaire et de la norme associée notée $\|.\|$. Deux vecteurs u et v de E sont orthogonaux si et seulement si $\|u+v\|^2 = \|u\|^2 + \|v\|^2$.
- 25. On considère la matrice A de $M_2(\mathbb{C})$, définie par $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ Le produit des valeurs propres de A est égal à 2.
- 26. On considère une matrice carrée A de taille n diagonalisable ($n \in \mathbb{N}^*$). La matrice A^2 est diagonalisable.

Dénombrement et probabilités

- 27. 20 personnes, dont 13 femmes, sont convoquées à un entretien. Les candidats sont reçus individuellement. La liste fixant l'ordre de passage a été établie par un tirage au sort équiprobable parmi l'ensemble des listes possibles. La probabilité que le deuxième candidat interrogé soit une femme sachant que le premier candidat interrogé est une femme est égale à 12/10.
- 28. On lance trois dés à six faces numérotées de 1 à 6 et on fait la somme des résultats obtenus. Le programme ci-dessous est écrit en langage Python.

```
from math import*
n=int(input("Entrez un entier compris entre 3 et 18 :"))
s=0
for i in range(1,7):
for j in range(1,7):
for k in range(1,7):
if i+j+k==n:
print(i,j,k)
s=s+1
print("Le nombre de façons d'obtenir",n,"avec trois dés est :",s)
```

La ligne 10 de ce programme donne le nombre de façons d'obtenir pour somme l'entier n, saisi par l'utilisateur.

Problème 2: meilleure approximation affine

Ce problème a pour objet de s'intéresser à la notion de meilleure approximation affine d'une fonction en un point.

Définitions

Soit f une fonction d'une variable réelle, définie sur un intervalle ouvert non vide I. Pour tout réel $a \in I$, on appelle approximation affine de f en a toute fonction affine g définie sur I telle que

$$g(a) = f(a)$$
.

Soient g_1 et g_2 deux approximations affines de f en a. Dire que g_1 est une meilleure approximation affine de f en a que g_2 signifie qu'il existe un intervalle ouvert D contenant a tel que

$$\forall x \in I \cap D, |f(x) - g_1(x)| \le |f(x) - g_2(x)|.$$

Si de plus f est dérivable sur I de dérivée f', pour tout $a \in I$, on appelle fonction affine tangente de f au point a la fonction t définie sur I par

$$\forall x \in I, \ t(x) = f(a) + f'(a)(x - a).$$

Étude d'un exemple

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = x^2 - x$$

- 1. Étudier la dérivabilité de la fonction f sur \mathbb{R} .
- 2. Tracer l'allure de la courbe représentative de f dans un repère orthonormé.
- 3. Déterminer la fonction t affine tangente à f en 0. Tracer la tangente en 0 sur la figure précédente.
- 4. Soit h la fonction définie sur \mathbb{R} par

$$h(x) = -\frac{1}{2}x.$$

- 4.1 Justifier que h est une approximation affine de f en 0. Tracer la courbe représentative de h sur la même figure.
- 4.2 Démontrer que

$$\forall x \in \mathbb{R}, \ |f(x) - t(x)| \le |f(x) - h(x)| \iff |x| \le \left|x - \frac{1}{2}\right|$$

4.3 En déduire que t est une meilleure approximation affine de f en 0 que h.

5. Pour tout réel $k \neq -1$, on note g_k la fonction affine définie sur $\mathbb R$ par

$$g_k(x) = kx$$
.

- 5.1 Justifier que g_k est une approximation affine de f en o.
- 5.2 Démontrer que

$$\forall x \in \mathbb{R}, |f(x) - t(x)| \le |f(x) - g_k(x)| \iff |x| \le |x - (1+k)|.$$

5.3 Démontrer que

$$\forall x \in] - \left| \frac{1+k}{2} \right|, \left| \frac{1+k}{2} \right| [, |f(x) - t(x)| \le |f(x) - g_k(x)|.$$

6. Que peut-on en conclure pour la fonction *t* ?

Cas général

On suppose ici que $I = \mathbb{R}$ et que la fonction f est dérivable sur I.

7. Démontrer que g est une approximation affine de f en a si et seulement si

$$\exists k \in \mathbb{R}, \forall x \in \mathbb{R} \ g(x) = f(a) + k(x - a).$$

Soit g une approximation affine de f en a telle que $k \neq f'(a)$. On pose pour tout $x \in \mathbb{R} \setminus \{a\}$,

$$T(x) = \frac{f(x) - t(x)}{x - a}$$
$$G(x) = \frac{f(x) - g(x)}{x - a}.$$

- 8. Déterminer les limites des fonctions *T* et *G* en *a*.
- 9. Que peut-on en conclure pour la fonction t?

Relation d'ordre

- 10. Rappeler la définition d'une relation d'ordre.
- 11. Soient f une fonction définie sur un intervalle ouvert I et a un élément de I.

La relation « être une meilleure approximation affine de f en a que » constitue-t-elle une relation d'ordre dans l'ensemble des approximations affines de f en a?

Problème 3 : dérangements

Ce problème a pour objet de déterminer le nombre de dérangements d'un ensemble fini.

Notations, définitions et rappels

Soit *n* un entier naturel non nul et soit E_n le sous ensemble de \mathbb{N} défini par $E_n = \{1, 2, \dots, n\}$.

On appelle permutation de E_n toute bijection de E_n dans lui-même. Soit σ une permutation de E_n et i un élément de E_n . Dire que i est un point fixe de σ signifie que $\sigma(i) = i$. On appelle *dérangement* de E_n une permutation de E_n n'ayant aucun point fixe.

On note S_n l'ensemble des permutations de E_n . On rappelle que le cardinal de S_n est n!. On note D_n l'ensemble des dérangements de E_n . Le cardinal de D_n est noté d_n .

Généralités

Dans cette partie, E désigne un ensemble fini non vide. A_1 , A_2 et A_3 sont des parties de E.

Justifier l'égalité

$$\operatorname{card}(A_1 \cup A_2) = \operatorname{card}(A_1) + \operatorname{card}(A_2) - \operatorname{card}(A_1 \cap A_2)$$

où card désigne le cardinal des ensembles considérés.

2. En s'inspirant de la relation précédente et en illustrant la réponse par un schéma, donner sans démonstration une expression de $\operatorname{card}(A_1 \cup A_2 \cup A_3)$, en fonction des cardinaux des intersections de ces parties.

Dans la suite, on admettra la *formule du crible* ci-dessous qui constitue une généralisation des deux précédentes.

Étant données n parties $A_1, A_2, ... A_n$ d'un ensemble E fini non vide, on a

$$\operatorname{card}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} \left((-1)^{k-1} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} \operatorname{card}\left(A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}\right) \right)$$

3. Retrouver à l'aide de la formule du crible la réponse obtenue à la question 2.

Calcul du nombre de dérangements

4. Donner les valeurs de d_1 et d_2 .

Pour tout entier i élément de E_n , on note A_i l'ensemble des permutations admettant au moins i pour point fixe.

$$A_i = \{ \sigma \in S_n \mid \sigma(i) = i \}$$

5. Démontrer que

$$S_n \backslash D_n = \bigcup_{i=1}^n A_i.$$

- 6. Étant donnés un entier k de E_n et k entiers deux à deux distincts $i_1, i_2, \cdots i_k$, justifier l'égalité $\operatorname{card}(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = (n-k)!$
- 7. Déduire des deux questions précédentes et de la formule du crible que

$$d_n = n! - \sum_{k=1}^{n} (-1)^{k-1} {n \choose k} (n-k)!$$

8. Démontrer que

$$d_n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

Applications

9. On note p_n la probabilité qu'une permutation choisie au hasard de façon équiprobable dans S_n soit un dérangement.

La suite (p_n) admet-elle une limite ? Si oui laquelle ?

10. On répartit au hasard n boules numérotées de 1 à n dans n urnes numérotées de 1 à n, en plaçant une boule par urne.

On note X_n la variable aléatoire qui à une telle répartition associe le nombre de coïncidences entre le numéro de l'urne et celui de la boule qu'elle reçoit.

- 10.1 Déterminer $P(X_n=0)$ et en déduire une expression de $P(X_n \ge 1)$.
- 10.2 Démontrer que pour tout entier q de E_n , on a

$$P(X_n = q) = \frac{1}{q!} \sum_{k=0}^{n-q} \frac{(-1)^k}{k!}.$$

10.3 Démontrer que l'espérance de X_n est indépendante de n.

On pourra écrire X_n sous forme d'une somme de variables aléatoires.

INFORMATION AUX CANDIDATS

Vous trouverez ci-après les codes nécessaires vous permettant de compléter les rubriques figurant en en-tête de votre copie. Ces codes doivent être reportés sur chacune des copies que vous remettrez.

► Concours externe du CAPES de l'enseignement public

• Section : mathématiques - Externe

Concours Section/option Epreuve Matière

[E|B|E| 1|3|0|0|E| 1|0|1| 9|3|9|0|

· Section : mathématiques - Troisième concours

Concours Section/option Epreuve Matière EBV 1300E 101 9390

Section : langues régionales option breton

Concours Section/option Epreuve Matière

EBE 0444E 109 9390

► Concours externe du CAFEP/CAPES de l'enseignement privé

• Section : mathématiques – Externe

Concours Section/option Epreuve Matière [E|B|F] 1300E 101 9390

Section : mathématiques – Troisième concours

• Section : langues régionales option breton

Concours Section/option Epreuve Matière EBF 0447E 702 9390