EFE GIS 1

SESSION 2021

CAPLP CONCOURS EXTERNE ET CAFEP

SECTION: GÉNIE INDUSTRIEL

Option: Structures métalliques

ANALYSE D'UN PROBLÈME TECHNIQUE

Durée: 4 heures

Calculatrice électronique de poche - y compris calculatrice programmable, alphanumérique ou à écran graphique – à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire n° 99-186 du 16 novembre 1999.

L'usage de tout ouvrage de référence, de tout dictionnaire et de tout autre matériel électronique est rigoureusement interdit.

Si vous repérez ce qui vous semble être une erreur d'énoncé, vous devez le signaler très lisiblement sur votre copie, en proposer la correction et poursuivre l'épreuve en conséquence. De même, si cela vous conduit à formuler une ou plusieurs hypothèses, vous devez la (ou les) mentionner explicitement.

NB: Conformément au principe d'anonymat, votre copie ne doit comporter aucun signe distinctif, tel que nom, signature, origine, etc. Si le travail qui vous est demandé consiste notamment en la rédaction d'un projet ou d'une note, vous devrez impérativement vous abstenir de la signer ou de l'identifier.

INFORMATION AUX CANDIDATS

Vous trouverez ci-après les codes nécessaires vous permettant de compléter les rubriques figurant en en-tête de votre copie

Ces codes doivent être reportés sur chacune des copies que vous remettrez.

► Concours externe du CAPLP de l'enseignement public :

Concours

Section/option

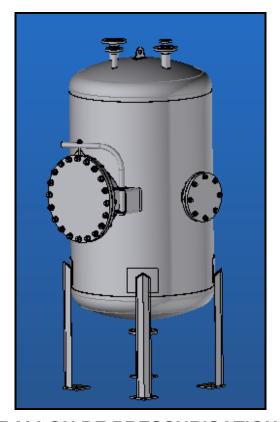
94005

Epreuve 101

Matière 7397

► Concours externe du CAFEP/CAPLP de l'enseignement privé :

Concours


Section/option

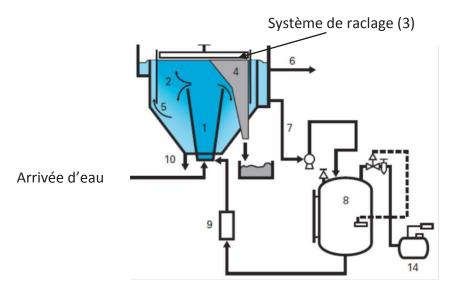
94005

Epreuve 101

Matière 7397

Constitution du sujet

BALLON DE PRESSURISATION


Dossier sujet : page 1 à page 6

Dossier technique : pages DT 1 à DT 8

Documents réponses : pages DR 1 à DR 4

L'étude porte sur un ballon de pressurisation installé sur un poste de flottation de traitement d'eau.

Le principe de fonctionnement d'un poste de flottation est décrit dans la figure ci dessous :

L'eau à traiter est introduite dans une chambre de mélange (1) où elle est mise en contact avec de l'eau pressurisée puis détendue, entraînant la formation de fines bulles d'air (ou de gaz) qui viennent se fixer sur les impuretés.

Ces impuretés, de densité inférieure à l'eau, se séparent de l'eau dans la zone (2) et viennent s'accumuler en surface. La boue ainsi constituée est collectée par un système de raclage (3) avant d'être évacuée par une goulotte (4). L'eau clarifiée est reprise sous une cloison siphoïde (5) avant d'être collectée et évacuée en (6).

Une partie de cette eau sera réutilisée dans le poste de flottation par l'intermédiaire de la sortie (7). Elle sera alors mise en contact avec de l'air sous une pression de 6 bar (14) dans un ballon de pressurisation (8).

L'entreprise en charge de la réalisation du ballon de pressurisation est une entreprise de chaudronnerie qui fabrique des ensembles chaudronnés et réalise des travaux de constructions métalliques.

Le sujet comporte quatre parties distinctes :

- Partie 1 : Étude des éléments de piquage.
- Partie 2 : Étude du corps et du fond.
- Partie 3 : Étude de l'assemblage du ballon de pressurisation.
- Partie 4 : Conception de la potence de la porte.

Partie 1 : Étude des éléments de piquage

Vous devez vérifier l'épaisseur des fonds bombés Rep.6 en situation normale de service constituant les deux extrémités du ballon de pressurisation.

Hypothèse : les fonds sont conformes à la norme NF E 81-102, ils sont considérés en un seul élément sans soudure.

Caractéristiques de l'appareil :

Code de construction 2010

Evaluation globale des facteurs potentiels de

défaillance et des conséquences d'une Faible

défaillance éventuelle

Catégorie de risque IV

Pression de service 6 bars
Pression de calculs 6 bars
Pression d'épreuve 9 bars

Température de service Ambiante (20°C)

Température de calcul 30°C

À l'aide des Documents Techniques DT1, DT2, DT3 et DT4

Répondre sur feuille de copie

Question n°1 : Déterminer la catégorie de construction ainsi que le coefficient de soudure du ballon de pressurisation.

Question n°2 : Calculer la contrainte nominale de calcul.

Question n°3 : Calculer l'épaisseur minimale nécessaire avec $\beta = 1,1$.

Question n°4 : Porter une conclusion quant au résultat obtenu.

Question n°5 : Déterminer le nombre ainsi que le diamètre des boulons permettant la liaison entre le Rep. 15 et le Rep. 23, **justifier** votre réponse.

Durée conseillée : 60 min.

Vous devez réaliser le corps Rep.1 du ballon de pressurisation dont le plan d'ensemble se trouve sur le Document Technique **DT1**.

Répondre sur feuille de copie

Question n°6: À partir des diamètres des fonds bombés dont le relevé de cotes est différent (diamètre du premier fond bombé: 1105 mm et diamètre du second fond bombé 2: 1098 mm) et en utilisant le *Document Technique DT3*, **déterminer** les dimensions du flan capable nécessaire pour réaliser le corps ?

Vous devez réaliser le développement du corps Rep.1 avec le piquage et le développement de la tubulure Rep.14.

Répondre le document réponse DR1

Question n°7: À l'aide des *Documents Techniques DT1 et DT3*, rechercher les paramètres nécessaires à la programmation du logiciel de Traçage Assisté par Ordinateur pour la fabrication du piquage entre Rep. 14 et Rep.1 afin de déterminer leurs développements.

Vous devez réaliser le tracé le positionnement des piquages Rep.16, Rep.18 et Rep.20 du ballon de pressurisation.

Répondre sur feuille de copie

Question n°8 : Proposer une solution pour déterminer par tracé la position des piquages Rep.16, Rep.18 et Rep. 20 sur le fond bombé GRC Rep. 6

Vous devez valider les paramètres de soudage de la soudure périphérique L4 de la petite fourrure repère Rep. 5 sur le corps Rep.1 du ballon de pressurisation, en vous aidant des Documents Techniques **DT4**, **DT5**, **DT6** et **DT7**.

Le métal d'apport participe à 70% de la constitution du métal fondu et les métaux de base participent à part égale dans la dilution.

Répondre sur feuille de copie

Question n°9 : À partir du document **DT6**, interpréter le résultat obtenu de la composition métallurgique du joint soudé suite à l'étude du diagramme de Schaeffler - Bystram.

Question n°10 : À partir des paramètres de soudage du *DT5*, déterminer l'énergie nominale de soudage nécessaire pour l'élaboration du joint soudé.

En : Energie de soudage en Kj·cm⁻¹

U : Tension de soudage en VoltsI : Intensité de soudage en Ampères

V : Vitesse de soudage en cm/min

 $En = \frac{60 \ U.I}{1000V}$

Question n°11 : Compléter le DMOS se trouvant sur le Document Réponse *DR2* en lien avec l'assemblage L4 en vous aidant du Document Technique *DT7*.

Après pointage, l'assemblage des fonds du corps se fait au procédé MIG (131) sur des vireurs. Un soudeur, équipé d'EPI (Équipements de Protection Individuelle) et avec les EPC (Équipements de Protection Collective) mis en œuvre, intervient pour effectuer cette opération. De nombreuses fabrications différentes sont en cours dans l'atelier et particulièrement dans la zone « soudure et meulage ».

Un travail collaboratif, au sein de l'entreprise, entre les membres du CHSCT (Comité d'Hygiène et de Sécurité des Conditions de Travail) et les différents opérateurs qui interviennent dans ce secteur, ont permis de réaliser l'analyse des risques en suivant la norme ISO 12100-2:2003.

Question n°12: À partir du Document Technique **DT8**, **compléter** le Document Réponse **DR3**, en indiquant les priorités d'intervention et le ou les moyens de protection que vous proposez pour chaque danger tout en les positionnant dans la colonne protection collective ou/et protection individuelle.


Dans le cadre de la préparation de l'assemblage de l'ensemble du ballon de pressurisation, vous devez planifier l'ordre d'assemblage des différents éléments constituant l'ouvrage.

Répondre sur feuille de copie

Question n°13 : Déterminer le graphe de montage des différents éléments constituant l'ensemble du ballon de pressurisation.

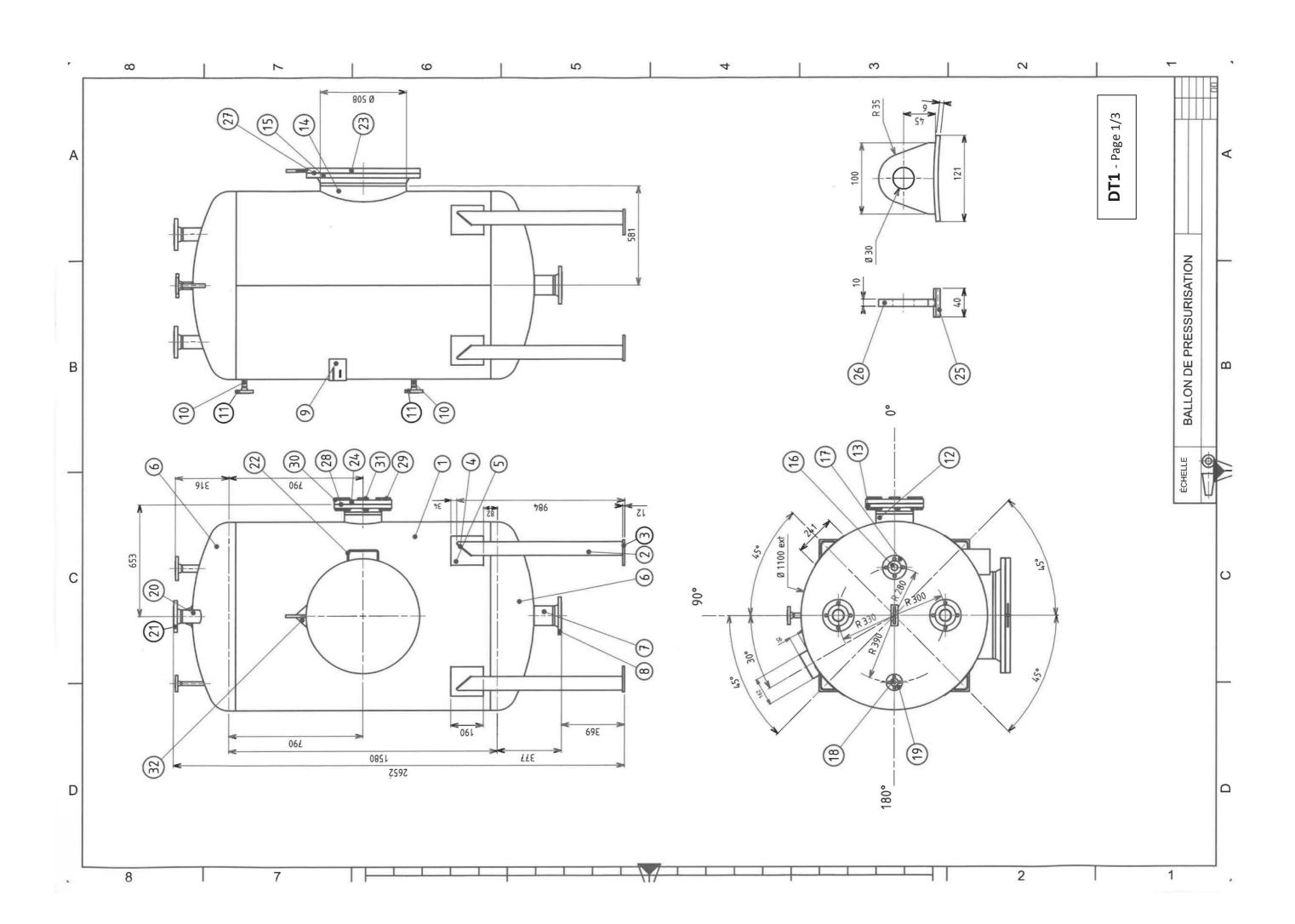
Vous êtes en charge de la conception de la potence (Rep. 22, Rep. 32) pour l'ouverture de la bride pleine située sur le plan d'ensemble Document Technique **DT1**.

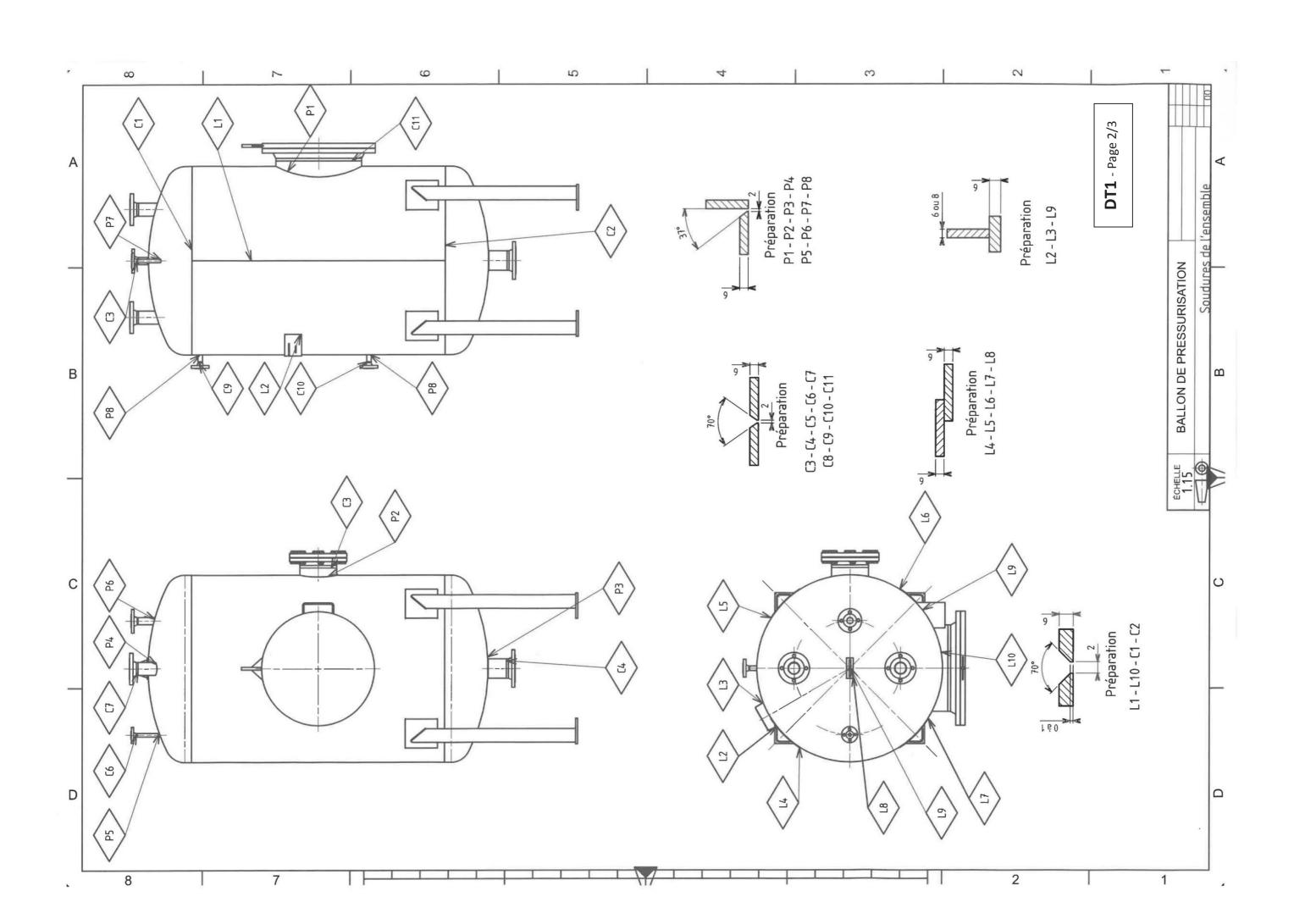
Question n°14: En respectant le schéma cinématique ci-dessous. **Dessiner** à main levée, sur le *Document Réponse DR4*, une solution démontable de cette potence afin de conserver la bride pleine et la virole en l'état.

CAPLP EXTERNE

Section : GÉNIE INDUSTRIEL

Option: STRUCTURES MÉTALLIQUES


Épreuve : Analyse d'un problème technique


Session 2021

Coefficient 1 – Durée 4 heures

Dossier Technique

DT1	Plans (format A3) et nomenclature du ballon de pressurisation	3 pages
DT2	Extrait du CODAP 2010	3 pages
DT3	Caractéristiques dimensionnelles - fond GRC - Brides à collerette	2 pages
DT4	Caractéristique des aciers	2 pages
DT5	Paramètres de soudage	1 page
DT6	Diagramme de Schaeffler - Bystram	1 page
DT7	Extrait de « comment rédiger un DMOS »	3 pages
DT8	Évaluation des risques	1 page

32	1	Système de fixation (à concevoir)	X 2 Cr Ni Mo 17-12-2	-
31	16	Ecrou HM20	X 2 Cr Ni Mo 17-12-2	ISO 4032
30	16	Rondelle M20	X 2 Cr Ni Mo 17-12-2	NFE 25-514
29	1	Bride pleine DN200 PN10	X 2 Cr Ni Mo 17-12-2	EN 1092-1
28	1	Joint plat DN200 PN10	C4430	Klingersil
27	1	Joint plat DN500 PN10	C4430	Klingersil
26	1	Anneau	X 2 Cr Ni Mo 17-12-2	Tôle ép.10
25	1	Tôle d'anneau	X 2 Cr Ni Mo 17-12-2	Tôle ép.6
24	1	Bride pleine DN200 PN10	X 2 Cr Ni Mo 17-12-2	EN 1092
23	1	Bride pleine DN500 PN10	X 2 Cr Ni Mo 17-12-2	EN 1092
22	1	Tôle support du système de fermeture	X 2 Cr Ni Mo 17-12-2	Tôle ép.8
21	2	Bride à collerette DN65 PN10/16	X 2 Cr Ni Mo 17-12-2	EN 1092-1
20	2	Tube sans soudure 42,4 x 3,2	X 2 Cr Ni Mo 17-12-2	EN 10216-5
19	1	Bride à collerette DN15 PN10/16	X 2 Cr Ni Mo 17-12-2	EN 1092-1
18	1	Tube sans soudure 21,3 x 2,6	X 2 Cr Ni Mo 17-12-2	EN 10216-5
17	1	Bride à collerette DN32 PN10/16	X 2 Cr Ni Mo 17-12-2	EN 1092-1
16	2	Tube sans soudure 76,1 x 3,6	X 2 Cr Ni Mo 17-12-2	EN 10216-5
15	1	Bride à collerette DN500 PN10	X 2 Cr Ni Mo 17-12-2	EN 1092-1
14	1	Tubulure	X 2 Cr Ni Mo 17-12-2	Tôle ép.8
13	1	Bride à collerette DN200 PN10	X 2 Cr Ni Mo 17-12-2	EN 1092-1
12	1	Tube sans soudure 219,1 x 3,76	X 2 Cr Ni Mo 17-12-2	EN 10216-5
11	2	Bride à collerette DN20 PN10/16	X 2 Cr Ni Mo 17-12-2	EN 1092-1
10	2	Tube sans soudure 26,9 x 2,6	X 2 Cr Ni Mo 17-12-2	EN 10216-5
9	1	Plaque signalétique	X 2 Cr Ni Mo 17-12-2	Tôle ép. 6
8	1	Bride à collerette DN100 PN10/16	X 2 Cr Ni Mo 17-12-2	EN 1092-1
7	1	Tube de vidange 114,3 x 4,5	X 2 Cr Ni Mo 17-12-2	EN 10216-5
6	2	Fond bombé GRC	X 2 Cr Ni Mo 17-12-2	EN 10028-2
5	4	Petite fourrure	Acier S355	Tôle ép. 6
4	4	Bouchon	X 2 Cr Ni Mo 17-12-2	Tôle ép. 6
3	4	Platine	X 2 Cr Ni Mo 17-12-2	Tôle ép.12
2	4	Pied	X 2 Cr Ni Mo 17-12-2	Tôle ép.8
1	1	Corps	X 2 Cr Ni Mo 17-12-2	Tôle ép. 6
Repère	Nbr.	Désignation	Matière	Observations

Extrait CODAP

Section C3 : règles de calcul des fonds soumis à une pression intérieure

Tableau GA5.4-1 - Détermination de la catégorie de construction.

Évaluation globale des facteurs potentiels de défaillance et des	Catégorie de construction minimum des appareils entrant dans le champ d'application de la Directive Européenne Équipements Sous Pression 97/23/CE ou de sa transposition en droit national									
conséquences d'une défaillance éventuelle	Sans catégorie	Catégorie de risque I	Catégorie de risque II	Catégorie de risque III	Catégorie de risque IV					
Faible	B2	B2	В2	B2	B2					
Moyenne	B2	B2	В2	В2	В1					
Importante	B2	B2	В2	В2	A					
Très importante	B2	B2	B2	В1	A					

Tableau GA5.4-2 - Contraintes nominales de calcul et coefficients de soudure.

F		Catégorie de construction								
	A	В1	B2							
Contrainte nominale de calcul : f	fi	fi	ſi							
Coefficient de soudure : z	z = 1	z = 0,85	z = 0,85							

C3.1.3 - Notations

 D_e = Diamètre extérieur du fond

 D_i = Diamètre intérieur du fond

 é
 épaisseur minimale nécessaire d'un fond d'épaisseur uniforme

ou

Épaisseur minimale nécessaire de la région périphérique d'un fond torisphérique constitué de plusieurs éléments soudés d'épaisseurs différentes **DT 2** - Page 2/3

 $e_{\rm s}$ = Épaisseur minimale nécessaire de la calotte sphérique d'un fond torisphérique

f = Contrainte nominale de calcul du matériau du fond

h_c = Hauteur du bord cylindrique d'un fond elliptique ou torisphérique

h_i = Flèche intérieure théorique d'un fond elliptique

P = Pression de calcul

Fonds torisphériques d'épaisseur uniforme

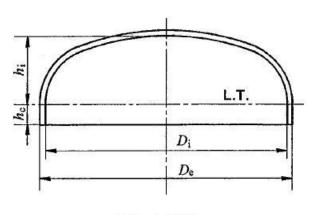
C3.1.5.1 - Fonds torisphériques d'épaisseur uniforme

a) L'épaisseur minimale nécessaire d'un fond torisphérique en un seul élément ou constitué de plusieurs éléments soudés de même épaisseur est donnée par la relation :

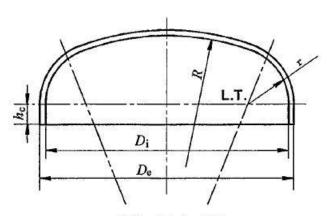
$$e = \text{MAX}\left[\left(e_{s}\right);\left(e_{b}\right)\right]$$
 (C3.1.5.1*a*)

b) L'épaisseur es est donnée par la formule :

$$e_{\rm s} = \frac{P \cdot R}{2 f \cdot z - 0.5 P}$$
 (C3.1.5.1b)


dans laquelle z = 1 si le fond est constitué d'un seul élément sans soudure.

c) L'épaisseur e_y est donnée par la formule :


$$e_y = \beta \left(0.75R + 0.2D_i \right) \frac{P}{f}$$
 (C3.1.5.1c)

d) L'épaisseur eb est donnée par la formule :

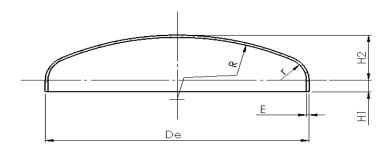
$$e_{b} = 0,0433 \left(0,75 R + 0,2 D_{i}\right) \left(\frac{D_{i}}{r}\right)^{0,55} \left(\frac{P}{f}\right)^{0,667}$$
(C3.1.5.1*d*)

a) Fond elliptique

b) Fond torisphérique

Tableau GA5.6.1-1 - Contrainte nominale de calcul pour une situation normale de service sans fluage du matériau.

Tôles, composants forgés, tubes et composants tubulaires


Maté	riau	Contrainte non	ninale de calcul f
		f_1	f_1
Aciers au carbone et o aciers faiblement alliés Aciers inoxydables austénit	et aciers alliés (M2)	$MIN\left\{ \left(\frac{R_{p3,2}^t}{1,5} \right) \left(\frac{R_n}{2,4} \right) \right\}$	$MIN \left\{ \left(\frac{R_{\text{p0,2}}^{t}}{1,6} \right) \left(\frac{R_{\text{m}}}{2,7} \right) \right\}$
	30 ≤ A < 35 %	$\frac{R_{\text{pl,0}}^{t}}{1,5}$	R ^t _{pl,0} 1,6
	3 (A)	Si seule R _{p1,0}	est spécifiée :
		$\frac{R_{pl,0}^{\dagger}}{l_s 5}$	$\frac{R_{pl,0}^{\dagger}}{1,6}$
			sont spécifiées :
Aciers inoxydables austénitiques (M3)	A ≥ 35 %	$\frac{R_{\text{pl,0}}^*}{1,5}$	$\frac{R_{\mathfrak{p}1,0}^{\dagger}}{l_{\mathfrak{p}}6}$
15-20 10 44 H		ou (Note 1)	ou (Note 1)
		$MIN\left\{ \left(\frac{R_{\text{pl},0}^{t}}{1,2} \right) \left(\frac{R_{\text{int}}^{t}}{3} \right) \right\}$	$MIN \left\{ \left(\frac{R_{p1,0}^{t}}{1,3} \right) \left(\frac{R_{m}^{t}}{3,25} \right) \right.$
		(Note 2)	(Note 2)
		Si seule $R_{\rm m}^{\rm t}$	est spécifiée :
		$\left(\frac{R_{n}^{1}}{3}\right)$	$\left(\frac{R_{\rm m}^{\rm t}}{3,25}\right)$
Aluminium et alliages d'aluminium (M13)		$MIN\left\{ \left(\frac{R_{p0,3}^{t}}{1,5} \right) \left(\frac{R_{m}}{2,4} \right) \right\}$	$MIN \left\{ \left(\frac{R_{p0,2}^t}{1,6} \right) \left(\frac{R_m}{2,7} \right) \right\}$
Cuivre et alliages de cuivre (M15)		$\frac{R_{m}^{1}}{4}$	R _m ⁴ /4,25

Note 1 : Au choix du Fabricant.

Note 2 : L'utilisation de cette valeur de f peut conduire lors de l'essai de résistance à des déformations permanentes qui bien que parfaitement acceptables en ce qui concerne la résistance de l'appareil peuvent être indésirables en raison d'impératifs fonctionnels. Si tel est le cas, il est recommandé de retenir la première détermination de la contrainte nominale de calcul.

Caractéristiques dimensionnelles - fonds GRC

(Suivant norme NF E 81-102)

De		E	H	2	R	r
	de	à	de	à		
300	2	10	57	53	300	30
350	2	10	67	63	350	35
400	2	12	77	72	400	40
450	2	12	86	81	450	45
500	2	16	96	89	500	50
550	2	18	106	98	550	55
600	3	20	115	107	600	60
650	3	20	124	116	650	65
700	3	22	134	125	700	70
750	3	25	144	134	750	75
800	3	25	154	143	800	80
850	3	28	163	152	850	85
900	4	28	172	161	900	90
950	4	32	182	169	950	95
1000	4	32	192	179	1000	100
1100	4	35	211	197	1100	110

Hauteurs préférentielles de bord droit

Е	2	3	4	5	6	8	10	11	12	14	16	18	20	22	25	28	32	35	40
H1	20	2	5	4	0	5	0	5	5	60	65	7	0	75	80	90	100	110	120

Caractéristiques dimensionnelles – Brides à collerettes Suivant la Norme EN 1092-1

				BRIDE	ACIER	A CC	DLLER	ETTE PI	N 10 -				0 10010
DN	C	Collerett	е	Ø ext.	Epais.	Hau	teurs	Perç	age	Portée d	de joint	Poids	
	Ø Aı	Ep. S	Ø N ₁	D	C ₂	H ₂	H ₃	nxL	ØK	Ø d ₁	f ₁	(kg)	Construction suivant EN 1092-1 (≈ DIN 2632)
10 au			Uti	liser les	dimensio	ons PN 4	10 - Use	dimensio	ns of PN	140			 acier carbone : réf. 10010 inox 316 L : réf. 10010 I
50 au 150			Uti	liser les	dimensio	ons PN 1	6 - Use	dimensio	ns of PN	116			Variantes : inox 304 L,
200	219.1	6.3	234	340	24	62	16	8 x 22	295	268	2	11.5	Sur demande : - DN 1200 au DN 3000
250	273.0	6.3	292	395	26	68	16	12 x 22	350	320	2	15.5	- cote S pour sch. 40 ; 80 ; 160
300	323.9	7.1	342	445	26	68	16	12 x 22	400	370	2	18.0	
350	355.6	7.1	385	505	26	68	16	16 x 22	460	430	2	24.5	
400	406.4	7.1	440	565	26	72	16	16 x 26	515	482	2	29.5	A1 A Détail A
450	457	7.1	488	615	28	72	16	20 x 26	565	532	2	34.0	IS
500	508	7.1	542	670	28	75	16	20 x 26	620	585	2	39.5	1 H2 H3 H3
600	610	7.1	642	780	28	80	18	20 x 30	725	685	2	56.0	C2 _11
700	711	8	746	895	30	80	18	24 x 30	840	800	2	65.0	N1
800	813	8	850	1015	32	90	18	24 x 33	950	905	2	87.0	4 K
900	914	10	950	1115	34	95	20	28 x 33	1050	1005	2	106.0	
1000	1016	10	1052	1230	34	95	20	28 x 36	1160	1110	2	123.0	

Caractéristiques des aciers

DT 4 - Page 1/2

Fiche technique de l'acier X2 Cr Ni Mo 17-12-2

1. Normalisation

AISI 316L DIN 1.4404 AFNOR X2 Cr Ni Mo 17-12-2

2. Caractéristiques

Acier inoxydable austénitique, amagnétique, très résistant à la corrosion dont la poudre de départ, atomisée au gaz, a une granulométrie maximale de 22 μ m. Cet acier présente une microstructure homogène à cœur en en surface permettant d'obtenir des états de surface et des usinages de qualité. Cet acier est apte aux traitements galvaniques ainsi qu'aux dépôts chimiques et physiques.

3. Composition

%C	%Mn	%P	%S	%Si	%Cr	%Ni	%Mo	%N	%O	%Fe
0,03	2	0,01	0,005	1	17	12	2	0,003	0,002	Compl.

4. Propriétés mécaniques

Traction⁽¹⁾: Rm \geq 550 MPa

Rp0,2 ≥ 180 MPa A% ≥ 50 %

(1) Sur éprouvettes non normalisées

Dureté à cœur : 120-140 HV1 Rugosité⁽²⁾ : 1 < Ra < 2 μm

Dureté en surface : 120-140 HV1

(2) Hors zone d'injection

Fiche technique des aciers de construction

	Caractéristique	es Mécaniques		Composition Chimique					
Matériel	Min. Limite D'élasticité	Min. Résistance à la Traction	Élongation	С	Si	Mn	Р	S	
	Мра	Мра	%	%	%	%	%	%	
Norme euro	péenne EN102	249							
S235	235	340	26	0.25	-	1.4	0.035	0.035	
S275	275	410	22	0.27	-	1.5	0.035	0.035	
S355	355	480	22	0.27	0.55	1.6	0.035	0.035	

Fiche technique des métaux d'apport

DT 4 - Page 2/2

FILINOX 316LSi

Gamme de fils massifs MIG-MAG pour les aciers inoxydables et résistant à la chaleur

FILINOX 316LSi est un fil massif de soudage MIG solide de type G 19 12 3 LSi/ER 316LSi, déposant un métal à faible teneur en C-19Cr12Ni2.5Mo.

FILINOX 316LSi est utilisé pour le soudage des aciers inoxydables de qualité 316 et 316L, dans de nombreuses applications incluant la fabrication de tuyauteries et de plaques. Le niveau Si supérieur produit une forme régulière de cordon de soudure et un aspect uniforme avec excellent mélange en bout en particulier dans les soudures en angle. Le joint de soudure a une haute résistance à la corrosion par piqûres et fissurante par des acides non oxydants.

Conforme aux classifications:

EN ISO 14343-A: G 19 12 3 L Si

AWS A5.9

FILINOX 316LSi – Analyse chimique

	С	Mn	Si	Р	S	Cr	Ni	Мо
Métal déposé	0,02	1,4	0,85	0,02	0,015	19	12,5	2,6

MIG 308LSi

Métal d'apport en fil massif pour le soudage MIG des aciers inoxydables austénitiques. A utiliser dans des applications d'emploi général et de corrosion peu sévère, pour des ensembles ne dépassant pas 350°C en température de service.

Analyse chimique

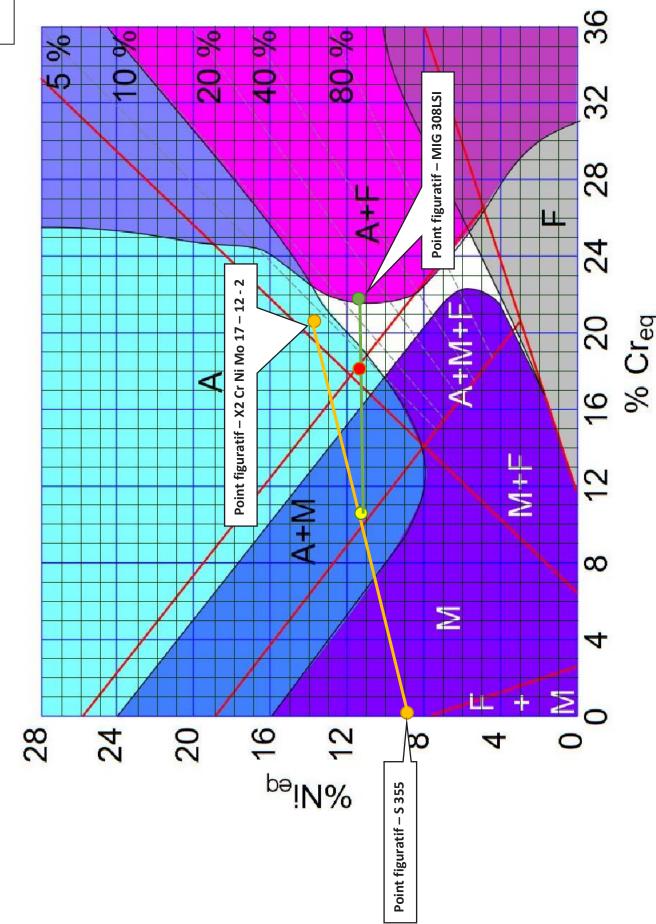
	С	Mn	Si	Р	S	Cr	Ni	Мо
Métal déposé	0,025	1,8	0,9	0,02	-	20,5	10	-

TYPE DE JOINT : EN ANGLE

GAZ DE PROTECTION : Gaz mixte Argon / CO2 METAUX SOUDES : Aciers non ou faiblement alliés POSITION DE SOUDAGE: A plat sauf VD verticale descendante VM verticale montante

Gorge	Ø	Tension	Intensité	Vitesse	Vitesse	Nombre		ar máti	re de cordon	(1)	Taux	
cordon	TH.	U		fil	soudage	passes	Temps	Gaz	Poids	Poids fil utilisë	FM=60% FM = Facto	
(mm)	(mm)	(Volt)	(Ampère)	(m/min)	(cm/min)		(min)	(2) (I)	(3) (grammo)	(grammo)	(kg/h)	(kg/h)
2	0,8	19	105	7,5	75	1	1,33	12	37	40	1,00	1,67
2	1.0	20	120	5,0	80	1	1.25	14	37	40	1.06	1,77
2 VD	0,8	19	105	7,2	70	1	1,43	13	37	40	0,93	1,55
3	0,8	22	180	16,1	75	1	1,33	12	78	82	2.11	3,51
3	1,0	24	220	10,0	78	1	1,28	14	78	82	2,19	3,65
3 VD	1,0	24	210	9,1	68	1	1.47	17	78	82	1,91	3,18
4	1,0	24	220	10,0	45	1	2,22	25	130	136	2,10	3,51
4	1,2	28	300	9,7	62	1	1,61	22	130	136	2,90	4,84
4 VD	1,2	23	190	4,3	28	1	3,57	48	130	136	1,31	2.18
5	1.0	24	220	10,0	29	1	3,45	38	200	210	2.08	3,57
5	1,0	26	260	15,0	43	1	2,33	26	200	210	3,09	5,15
5	1.2	29	300	10,3	43	1	2,33	31	200	210	3.09	5,15
5	1.6	32	360	6,4	48	1	2.08	38	200	210	3,46	5,76
5 VD	1,2	23	190	4,3	18	3	5,56	74	200	210	1,29	2,16
6	1,2	29	300	10,3	30	1	3,33	44	285	300	3,08	5,13
6	1,6	32	360	6,4	34	1	2,94	54	285	300	3,49	5,81
6 VM	1,0	20	120	4,9	10	1	10,00	110	285	300	1.03	2,71
7	1,2	29	300	10,3	23	3	4,34	58	385	405	3,19	5,32
7 VM	1,0	20	120	4,9	7.5	1	13,33	147	385	405	1.04	1,73
8	1,2	29	300	10.3	17	3	5,88	88	503	530	3,08	5,13
8	1.6	33	380	6,8	20	1	5,00	88	503	530	3,62	6,03
10	1,2	29	300	10,3	11	4	9,09	121	780	820	3,08	5.14
10	1.6	33	380	6,8	13	3	7,69	136	780	820	3.65	6,08

(1): Pour l'aluminium, diviser les poids de fil au mêtre par 2,91
(2): Poids cordon = a'' x longueur (volume théorique) x 7800 kg/m² (masse volumique aclar) + influence surépaisseur cordon
(3): Poids du fil = poids cordon + 5 % pertes par projections et volatilisation


TYPE DE JOINT : En V ou en X GAZ DE PROTECTION : Gaz mixte Argon / CO2

METAUX SOUDES : Aciers non ou faiblement alliés POSITION DE SOUDAGE: A plat

Epaisseur	Type de joint	Nombre passes	Still	Tension U	Intensité I	Vitesse fil	Vitess		Par méti Temps	Gaz	ordon (1) Poids fil utilisé
(mm)			(mm)	(Volt)	(Ampèro)	(m/min)	(cm/m	in)	(min)	(0)	(grammo
6	En X	2	1,0	22	170	7,2	110	55	1,82	20	80
	$\alpha = 60^{\circ}$		1,0	22	170	7.2	110 +				
5	En V	2	1.0	20	130	4,5	24 +	17	5,95	66	222
	$\alpha = 50^{\circ}$, $a = 2 \text{ mm}$		1.0	24	220	10,0	57 +				
6	En V	2	1.0	20	130	4.5	27 1	16	6,27	69	256
	$\alpha = 50^{\circ}$, a = 2 mm		1,0	24	220	10,0	39 🔻				
8	En X	2	1.2	26	245	8,0	85 🛉	43	2,35	32	166
	$\alpha = 60^{\circ}$		1.2	26	245	8,0	85	-			
8	En V	3	1,2	18	135	3.1	20 1	13	7,86	104	396
	$\alpha = 50^{\circ}$, $a = 2 \text{ mm}$		2 x 1,2	2 x 29	2 x 300	2 x 10,3	2 x 70 +				
10	En V	3	1.2	18	135	3.1	20 4	10	10.13	134	603
	$\alpha = 50^{\circ}$, $a = 2 \text{ mm}$		2 x 1.2	2 x 29	2 x 300	2 x 10,3	2 x 39 v				
10	En V	3	1.2	18	135	3.1	20 4	11	9,44	166	610
	$\alpha = 50^{\circ}$, $a = 2 \text{ mm}$		2 x 1,6	2 x 33	2 x 380	2 x 4.5	2 x 45 v				
12	En V	- 4	1.2	18	135	3.1	20 4	8	12,50	165	818
	$\alpha = 50^{\circ}$, $a = 2 \text{ mm}$		3 x 1.2	3 x 29	3 x 300	3 x 10.3	3 x 40 •				
15	En V	5	1,2	18	135	3,1	and the same of the same of	6	18.16	240	1275
70.01	$\alpha = 50^{\circ}$, a = 2 mm	11 (23)	3 x 1.2	3 x 29	3 x 300	3 x 10,3	3 x 37		100000000000000000000000000000000000000	ATT ATT O	
			1.2	29	300	10,3	24	10			

(1): Pour l'aluminium, diviser les poids de fil au mêtre par 2,91

Extrait de « comment rédiger un DMOS »

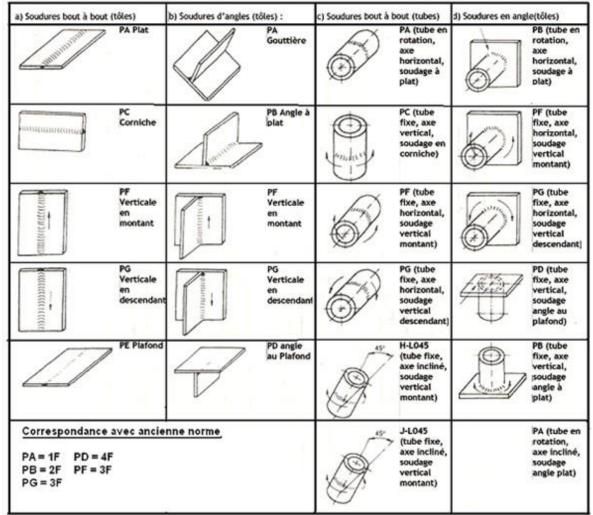
(suivant la norme NF EN ISO 15609)

DT7 - Page 1/3

1) Les paramètres et indications du DMOS :

1-1) Valeurs à titre d'information :

- Lieu : Il s'agit du centre ou est réalisé la qualification du mode opératoire de soudage.
- **Référence** : C'est un numéro de référence fourni par l'entreprise.
- Numéro de QMOS
- Constructeur/Fabricant : Entreprise cliente de la QMOS
- Nom du soudeur.
- Examinateur ou organisme d'inspection : Personne qui validera la QMOS (APAVE, VERITAS, SOCOTEC...)


1-2) Valeurs et paramètres concernant les matériaux et la préparation :

- Mode de préparation du joint soudé et de nettoyage du joint soudé : pour la préparation, on utilisera le meulage, le chanfreinage (avec chanfreineuse portative par exemple), le cisaillage, l'usinage, le fraisage les procédés de découpe thermique (plasma, oxycoupage, laser) ou non-thermique (jet d'eau, poinconnage grignotage).
- **Mode de nettoyage du joint soudé** : on peut utiliser le meulage, le brossage, le ponçage, le sablage, le grenaillage, le dégraissage ou le décapage chimique.
- Spécifications du matériau de base (exemples courants) :
- **W01**: Aciers non alliés à basse teneur en carbone, aciers faiblement alliés et aciers à grains fins de limite à l'élasticité Re inférieure ou égale à 355 N/mm².
- **W02**: Aciers résistant au fluage au Chrome et Molybdène (Cr/Mo) et Chrome, Molybdène et Vanadium (Cr/Mo/V).
- **W03**: Aciers de construction à grains fins, normalisés, trempés et revenus et aciers à traitements thermomécaniques, de limite d'élasticité Re>355 N/mm² ainsi que les aciers aux conditions de soudage similaires contenant 2 à 5 % de Nickel.
- **W04**: Aciers ferritiques ou martensitiques contenant 12 à 20 % de Chrome.
- W11 : Aciers inoxydables austéno-ferritiques et aciers inoxydables austénitiques (Cr/Ni) Définitions selon la norme EN 287-1-A1.

1-3) Valeurs et paramètres concernant les matériaux et la préparation (suite) :

- Epaisseur du matériau de base : épaisseur en mm du matériau à souder.
- **Diamètre du matériau de base** : pour une pièce circulaire, rond ou tube, on indique le diamètre en mm à souder.

- 1-4) Informations relatives au joint soudé :
- Procédé de soudage : Numéro du procédé de soudage utilisé (ex : 135, 111, 141...).
- Position de soudage de l'assemblage :

Type du joint soudé :

Il s'agit d'une suite de symbolisations qui déterminent avec précision, le type de joint réalisé. Les variables suivantes seront utilisées :

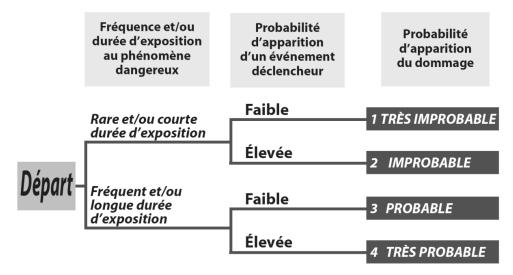
Codifications pour le type d'assemblage de soudage :

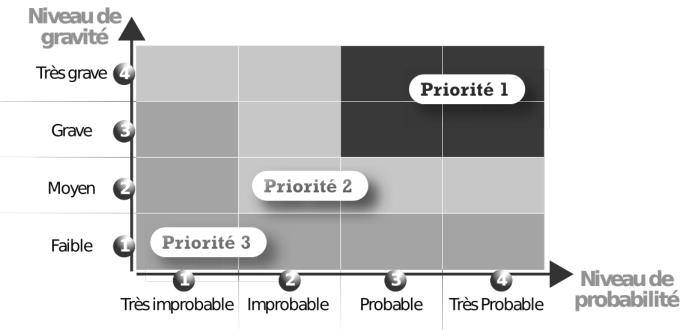
- P : Soudage sur tôle(Plate) ;
- T : Soudage sur tube ;
- BW : Soudage bout à bout ;
- FW : Soudage en angle.

Codifications pour le mode d'assemblage :

- ss : Soudage d'un seul coté ;
- bs : Soudage de deux cotés ;
- ng: Sans gougeage par meulage;
- qq: Avec gougeage par meulage d'apport utilisé;
- nb : Soudage sans support envers ;
- mb : Soudage avec support envers.
- Détail de gougeage ou support envers : À indiquer si existant.

1-5) Informations relatives au gaz, métal d'apport et électrodes :


Métal d'apport : Suivant codification, indiquer le métal


- Marque et type du métal d'apport.
- Reprise spéciale ou séchage : selon besoin, à indiquer.
- Gaz de protection ou flux : Par exemple Ar+CO² (envers et/ou endroit).
- Débit de gaz de protection : Indiquer en litres/min les débits pour la soudure envers et/ou endroit.
- **Dimension et type d'électrode non fusible (TIG)** Angle de la torche.
 - 1-6) Informations relatives au préchauffage, traitement thermique :
- Température de préchauffage : A indiquer si nécessaire.
- Traitement thermique après soudage : A indiquer si nécessaire.
- Temps, température et méthode : selon besoin, à indiquer.
- Vitesse de montée en température et de refroidissement : selon besoin.
- Température entre passes : selon besoin.
 - 1-7) Schémas du DMOS
 - **1-7-1) Schéma de la préparation avant soudage** : ce schéma représentera la préparation avant soudure. On notera les dimensions importantes tolérancées. Il peut s'agir des épaisseurs des éléments à souder, jeu de soudage, talon, angle du chanfrein.

Évaluation du dommage :

- 1: accident du travail (AT) ou maladie professionnelle (MP) sans arrêt
- 2: AT ou MP avec arrêt
- 3: AT ou MP avec rente
- 4: AT ou MP mortel

Probabilité d'apparition :

CAPLP EXTERNE

Section : GÉNIE INDUSTRIEL

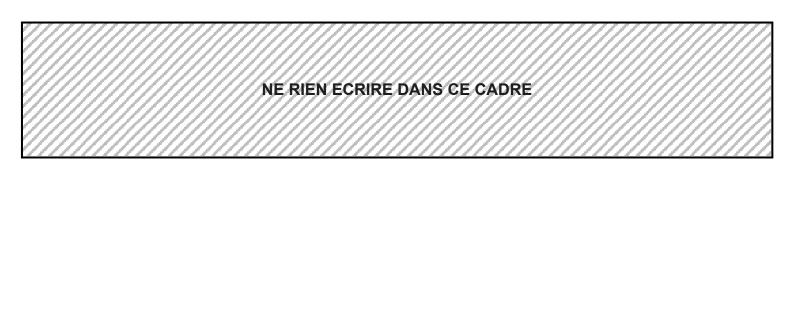
Option: STRUCTURES MÉTALLIQUES

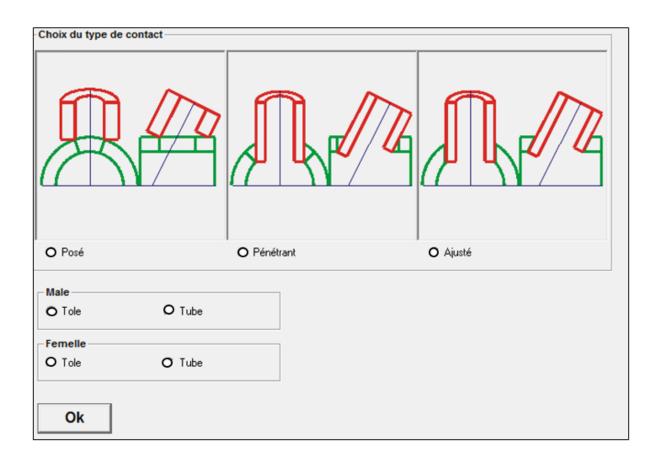
Épreuve : Analyse d'un problème technique

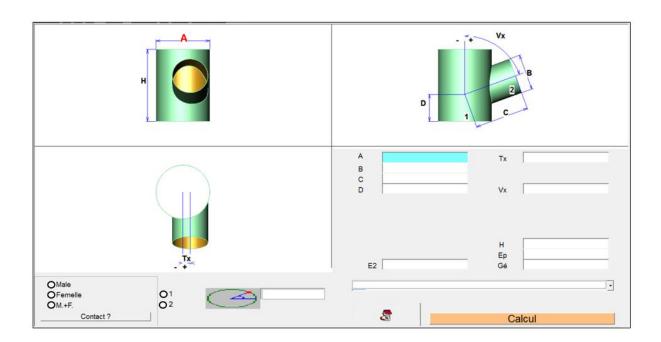
Session 2021

Coefficient 1 – Durée 4 heures

Documents réponses


DR1	Traçage Assisté par Ordinateur
DR2	DMOS
DR3	Grille d'analyse des risques
DR4	Conception de la potence de porte


Modèle CMEN-D	OOC v2 ©NEOPTEC			ī			1	1											_	1		
	n de famille : a lieu, du nom d'usage)																					
	Prénom(s) :																					
	Numéro Inscription :											N	é(e)	le :			/					
	(Le	e numér	o est c	elui qu	i figure	sur la c	convoca	ation ou	la feuil	lle d'ém	argeme	ent)										
(Remplir cette partie Concours	à l'aide de la notice) / Examen :							s	ectio	on/Sp	oécia	lité/S	Série	:						 	 	
	Epreuve:							N	Matiè	re:						Se	ssio	n :		 	 	
CONSIGNES	 Remplir soigne Ne pas signer Numéroter cha Rédiger avec u N'effectuer aux 	la com aque Pi un stylo	positi AGE o à en	on et l (cadre cre fo	ne pas en ba ncée (s y app as à dr bleue	orter o oite de ou no	de sigi e la pa ire) et	ne dist ge) et ne pas	inctif p placei s utilis	ouvar r les fe er de s	t indiq uilles d tylo pl	uer sa dans l ume a	a provi e bon i encre	enanc sens e clair	et dan e.	s l'ord	re.				

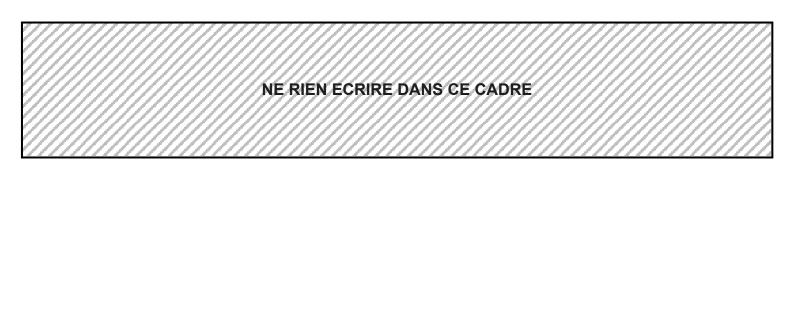

EFE GIS 1

DR1 - DR2

Tous les documents réponses sont à rendre, même non complétés.

DR2

EN ISO 9606-1 DESCRIPTIF DE MODE OPÉRATOIRE DE SOUDAGE


	■ T		Méthode de préparation de nettoyage						
PV-QMOS n° :									
Constructeur o	ou Fabricant :		Spé	cification matériau	de base :				
Nom du soude	ur :		Epaisseur du matériau (mm) :						
Procédé de so	udage:		Diar	nètre :					
Type de joint :			Posi	ition de soudage : .					
Détail de prépa	aration de joint (Sché	ma) :							
	Schéma de pre	éparation		Disposition (des passes				
ramètres de	soudage								
Passe n°	Procédé :	Dimension Métal d'apport	Courant	Voltage V	Type de courant Polarité				
		Dimension Métal d'apport	Courant A		Type de courant Polarité				
			_						
			_						
			_						
			_						
			_						
Passe n°	Procédé :	Métal d'apport	A						
Passe n°	Procédé :	Métal d'apport	A Autres info	V					
Passe n° Métal d'apport co	Procédé :	Métal d'apport	A Autres info	varions:	Polarité				
Passe n° Métal d'apport co	Procédé : odification que et type : ou séchage :	Métal d'apport	A Autres info	varions:					
Passe n° Métal d'apport co Marc Reprise spéciale	Procédé : Description of the procéd	Métal d'apport	A Autres info	ormations :	Polarité				
Passe n° Métal d'apport co Marc Reprise spéciale Gaz de protectio	Procédé :	Métal d'apport	A Autres info	ormations :	Polarité				
Passe n° Métal d'apport co Marc Reprise spéciale	Procédé :	Métal d'apport	A Autres info	ormations :	Polarité				
Passe n° Métal d'apport co Marc Reprise spéciale Gaz de protectio Débit de gaz	Procédé : podification	Métal d'apport	A Autres info	ormations :	Polarité				
Passe n° Métal d'apport co Marc Reprise spéciale Gaz de protectio Débit de gaz Types d'électrod	Procédé : podification	Métal d'apport	Autres info	ormations :	Polarité				

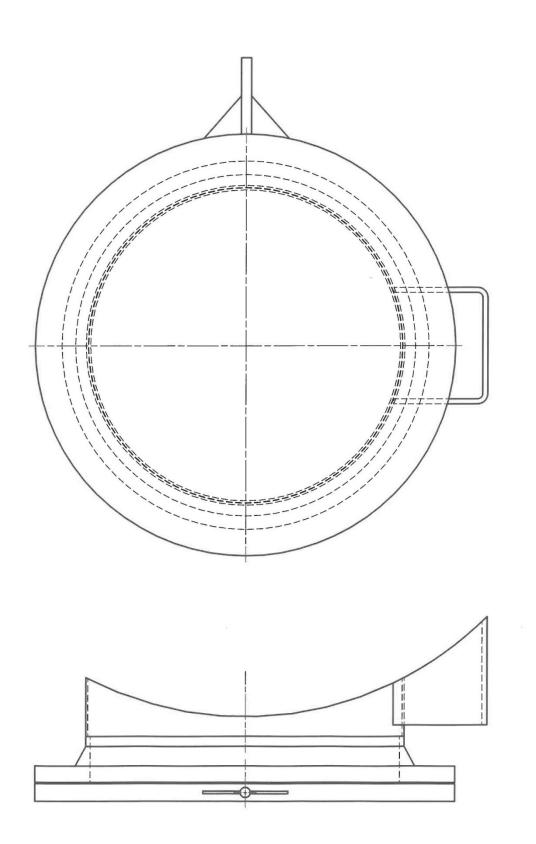
Modèle CMEN-D	OC v2 ©NEOPTEC	$\overline{}$			_													$\overline{}$	$\overline{}$	$\overline{}$	_	$\overline{}$
	de famille :																			.		
(Suivi, Sii y a i	ileu, uu rioiri u usage)	\boxminus		+-														=		=	=	
	Prénom(s) :																					
	Numéro Inscription :	П									N	é(e)	le :			/		/				
	•	numéro	est celui	qui figure	sur la c	convoca	tion ou	la feuill	le d'ém	argeme		. ,				/						
(Remplir cette partie à	à l'aide de la notice) / Examen :						S	ectio	n/Sp	écia	lité/S	Série	:					 				
	Epreuve:						N	latiè	re:						Se	ssio	ı :	 				
CONSIGNES	 Remplir soigne Ne pas signer Numéroter cha Rédiger avec u N'affectuer ave 	la comp que PA un stylo	oosition e NGE (cad à encre	t ne pas re en ba foncée (s y app as à dr (bleue	orter d oite de ou noii	le sign la pag re) et i	ne disti ge) et _l ne pas	inctif p placer utilise	ouvan les fe er de s	t indiq uilles d tylo pl	uer sa dans le ume à	a provi e bon i encre	enanc sens e e claire	et dan: e.	s l'ordi	e.					

EFE GIS 1

DR3 - DR4

Tous les documents réponses sont à rendre, même non complétés.

DR3


Grille d'analyse des risques

Zone soudure et meulage

1 – Identifier l	es dangers	2 – Estimer les risques					
Danger	Dommage	Gravité	Probabilité	Priorité			
Cause du dommage	Lésion	1 à 4	1 à 3	1 à 4			
Arc électrique de soudage	Lésion oculaire	2	3				
Fumées de soudure	Maladie pulmonaire	4	4				
Scories	Brûlures	2	4				

Danger	3 - Prévenir les risques							
Cause du dommage	EPI	EPC						
Arc électrique de soudage								
Fumées de soudure								
Scories								

Conception de la potence de porte

